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ABSTRACT

Calculations are presented that are elements of a model1 to predict the
IR radiation emitted by high-altitude rocket plumes, because of the inter-
action of the plume gases with the ambient atmosphere. A model of plume
radiance is presented, appropriate to high altitudes where the average time
between plume and atmospheric species collisions is greater than the radia-
tive lifetimes of the relevant excited molecular states. The three parts of
the calculation — flow field density, molecular collisional excitation, and
molecular nonequilibrium radiation — are identified and discussed,

The penetration of a hypersonic low-density atmosphere into the exhaust
plume of a steadily firing rocket motor is studied by use of the kinetic theory
of gases. The flow field is modeled mathematically by employing the Hill-
Draper description of the exhaust jet and the BGK collision integral to reduce
the problem to an analytically interpretable and computationally tractable
form. The distribution function of the ambient gas is bimodal, with the
unscattered fraction of the molecules peaked about the uniform freestream
velocity, and the scattered gas carried along with the macroscopic exhaust
gas velocity.

Classical rotational excitation probabilities for the collisions of HF,
HC1, and OH with three atomic species have been calculated in three dimen-
sions by use of a Monte Carlo procedure. Results are presented for the
rotational excitation of both rigid diatomic rotors and those coupled via a
classical harmonic oscillator. Hard-sphere intermolecular potentials are
employed to obtain results applicable to high-energy ( ~1 aV) collisions.

The results of these two methods of calculation indicate that for the center-
of-mass collisional energy range of 1 to 10 eV, which dominates the problem
of interest, activation of the vibrational modes is quite inefficient,

Once excited to high rotational states, these diatomic molecules can
radiate at infrared wavelengths. The power radiated into a frequency band
via pure rotational radiation by a diatomic molecule with a permanent electric
dipole moment has been calculated both quantum mechanically and classically.
The results define the region of validity for the classical approximation., It
is concluded that for the range of parameters of interest to the plume inter-
ference probiem the classical approximation is adequate. In order to be con-
crete, the results of the theory are applied to the particular case of rotational
emission from the hydrogen flouride molecule.
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FAR FIELD PLUME RADIANCE MODEL

1. INTRODUCTION

Plume interference can be roughly defined as the degradation of the signal-to-
noise ratio of a sensor due to the radiation emitted by the exhaust plume of a rocket

engine either aboard the same vehicle as the sensor or aboard some other, nearby

vehicle. If the engine is aboard the same vehicle as the sensor, the situation is one
of self-interference; if it is aboard a nearby vehicle, it is one of mutual interference.
The emphasis of the work reported here is on self-interference, although much, if

not all, of it is applicable to mutual interference as well.

In the summer of 1971, a panel with Dr. Hans Wolfhard of IDA as chairman
performed a preliminary study of the plume interference problem(.l) In particular,
this panel divided plume interference into two basic parts: the near-field radiation
and the far-field radiation. The near-field was defined as the radiation originating
from IR-active molecular species emerging from the rocket nozzle in an excited
state. The far-field was defined as the radiation from plume species excited into
IR-active states because of collisions with atmospheric species. Thus, the division

of the problem is based on the molecular excitation mechanism.

the Wolfhard panel recommended thzat it be studied in more detail. The first efforts
to study the problem undertaken by ABMDA were directed towards the specific case

of the proposed HIT interceptor system(..z’ 3)

‘ On the basis of their initial examination of the plume interference problem,
This report deals with the far-field plume interference problem, and is the

l Final Technical Report of the far-field modeling efforts performed at Aerodyne

‘ Research, Inc. during the ABMDA Plume Interference Program. The work done is

a natural extension of far-field plume radiance calculations made earlier under the

HIT Plume Interference Program(.4)

I-1
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The calculations performed to predict the far-field plume radiance of the HIT
vehicle were for a small, short-pulsed solid propellant engine fired in the upper
atmosphere, typically above 200 km, The molecular radiating mode identified as
the dominant source of radiation in the far field was pure rotation of water. The
details of the various calculations are discussed in the HIT Program Final Technical

Reportf4) as well as ir separate pubncations(.s’G’ 0

These HIT program calculations were performed over a relatively short period
of time in order to calculate the signal-to-noise ratio degradation as a function of
time after engine shutdown, and the results of the calculations were used as system
design limits and criteria. The work reported below, and performed under the Plume

I
|
I
]
l
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Interference Program, was done under different circumstances, however, The aim
of the far-field modeling under this later program was to broaden the predictive

capability of the initial modeling efforts by considering different aerodynamic regimes,

[ -

and by including IR-active molecular modes other than the water rotation considered
for HIT. To achieve this end a number of calculations were undertaken. (In addition,
data analyses and plume radiance predictions were carried into execution, 2nd are

reported under separate cover in Volumes II and III).

Section 3 of this report discusses a calculation of the penetration of a hypersonic
low-density atmosphere into the exhaust plume of a steadily firing rocket motor using
the kinetic theory of gases. Section 4 concerns the far-field molecular excitation v
process; classical rotational excitation probabilities for collisions of HF, HC1, and
OH with three atomic species have been calculated in three dimensions. Section 5 -
concerns the nonequilibrium radiation from the excited molecular states; the power
radiated into a frequency band via pure rotational radiation by a diatomic molecule
with a permanent electric dipole moment has been calculated both quantum mechanically
and classically. The calculations presented in these three sections, along with the
overall plume radiance formulation discussed in Section 2, are the far-field plume
radiance model elements performed during this program,

Before proceeding to the details, it is perhaps worthwhile to outline the present
status and extent of the far-field models. Thus far, there are basically two aerodynamic
interaction configurations which can be modeled. The first configuration is the decay

I-2
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of short-pulsed engine plumes operating at high altitudes. The engines aboard the
proposed HIT vehicle are of such a type. The second is the interaction region between
the relatively dense core of a continuously firing engine and the high-altitude atmo-~
sphere. In each case, the engine size appropriate to the model has up to several
thousand pounds thrust at altitudes of 400 to 500 km.

In each of these two aerodynamic regimes, a number of IR-active plume species
have been includefl in the overall radiation model. The high collision-energy excita-
tion of, and the subscyuent nonequilibrium radiation from the pure rotational motion
of Hzo and the 1'atomic hy<ride molecules HF, HC1 and OH have so far been con-
sidered. Concentration has heen centered on these pure rotational emitters, since
rotational radiaticn form: a quasicontinuous spectral background across the wave-
length regions of interess. in the plume interference problem, and thus, cannot be

eliminated by judicious » ivelength filtering.

While consideriug wne scope of the present far-field plume radiance models, it
is worth noting that all ‘.1e calculations mentioned have begun from basic principles.
There is very little, if any, data presently available shedding light on the far-field
problem. Thus, the modeler bears a heavy burden, and it behooves him to base

his models as firmly as possible on accepted physical principles.

a I g"m b\
i ) Cowog T . b » /
T - ! PR I sl s ‘»J j

N DN N e



2. PLUME RADIANCE FORMULATION

The overall objective of the far-field modeling efforts is to be able to calculate

W N W

plume radiance for a variety of interceptor configurations. In order to handle
this objective, the overall radiance problem has been broken down into several parts,
as was mentioned in the introduction. This section will more clearly define this
division into parts, and, in particular, will describe the overall radiance formulation

necessary to combine these parts.

Generally speaking, the sequence of events leading to far-field radiation
from a rocket exhaust plume is as follows. The rocket engine burns for some time,
At, and an expanding mass of gas is emitted from the nozzle. As this gas flows away
from the nozzle, the plume molecular species begin to collide with atmospheric
species. During these collisions, plume species are excited into IR active states,
and they consequently begin to radiate. As they continue to travel away from the
rocket nozzle, the plume species continue to undergo collisions that can excite them
(or possibly deexcite them if they have not had time to radiate away the excitation
energy imparted in a previous collision). In addition, these collisions bring the
plume molecules into equilibrium with the ambient atmosphere, so that, asymptotically,
in time, the plume becomes a cloud of gas at rest with respect to the atmosphere
and diffuses away Therefore, the three individual parts of the far-field radiance
problem are the; calculations of the plume and atmosphere gas densities, the excita-

tion rate of relevant modes of plume species, and the power radiated by these excited

modes. The p ume radiance model, then combines these separate calculaticas to

calculate plume radiance.

The overall radiance model to be used here is similar to the one evolved earlier
for the specific case of the HIT intercept vehiclefs) The following discussion parallels

the discussion of that model to be found in Ref. (8).

The plume is an extended source of radiation. The power on the detector from

—_——

; PRECEDING PAGE BLANK-NOT FIL

| such an extended source is given simply by




A_N (2-1)

wh.re .Q,f is the solid anguiar field of view of the detector, AR is the area of the

receiver optics, and N is the plume radiance (emitted into the operating band of the

detector: units: watts/cmz—sr). The source radiance can be written

o0
= 1 .'_. -
N = = f dr]dSiI(Si)n(Si,r,t) (2-2)
0

where I_,(Si) is the power radiated into the hand by a w_a’ter molecule in the Sith state,
n (Si ; T, t) is the density of such molecules at point r in space and at time t, the
line integra! dr is along the sensor line of sight, and the integral dSi is over the
manifold of accessible molecular states Si. Although correct, this equation is not
very useful as written. For the conditions under which many interceptor systems

operate, considerable simplification is possible.

First, at high altitudes (e.g., above 200 km) the atmosphere is sufficiently
tenuous that the average time between collisions of plume and atmospheric species
becomes longer than the radiative lifetimes of the relevant LWIR active excited states,
and most excited molecules completely deexcite via radiative emission between
collisions. This limit of short radiative lifetimes compared to mean collision times

is the exact opposite limit of the more usually encountered one of thermal equilibrium.

Second, for a narrow field-of-view detector, the plume and atmospheric gases may
be considered uniform across the field of view. This means that the power radiated

by an ensemble of molecules in some elemental volume is given by
4P = EN(E'; wy,wy) n (E*: 1, t) (2-3)

where n is the creation rate of molecules in an excited state E*, and EN is the total

energy ultimately radiated by the state E' into the frequency band of interest, w, to w

1 2°
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Thus, to find the plume radiance under these conditions, one need only aad up the
contributions of all the excited states and integrate along the observational line of
sight. For the case of rotational excitation and radiation, of primary interest here

as explained iu the introduction, the plume radiance, N, can be written as

o0 [+ ¢]
1 . —
N = e /dr J[ dER EN (ER s wys “’2) n (ER; r, t) (2-4)
0 0

where F* (ER; w 1
in the initial rotational energy state ER, n is the rate of creation of such molecuies
at point r and at time t per unit energy, the integral dr is still a line integral along

1’ wz) is the total w, -~ w, band energy emitted by a molecule

the line of sight, and the dER integral is over all initial rotational energies of the

molecule.

r.1 (ER; r , t), the rate of creation of molecules in the state ER per unit volume
per unit energy (ER), is related Lo the differential excitation cross section, the
collision relative velocity, and the exhaust and ambient gas densities. That is, n
is the number of collisions between exhaust molecules and ambient atmospheric
particles per unit energy per unit time producing the appropriate final rotational

state, and is given by

. ) _ 3 3 -—.——b
n (ER,r, t) -[d va[d ve “va ve

—

where \A is the ambient particle velocity, Ve is the plume molecule velocity,

do /3 ER is the differential rotational excitation cross section, fa (;;) is the

o0 e - ,
aER fa (‘a) fe (ve):‘ (2-5)

ambient atmospheric-phase space distribution function (units: em ™3 (cm/sec)—B),
and e (\_/; ) is the exhaust~phase space distribution function for the appropriate
plume constituent. This expression is the usual collisional rate constant expression
for an ambipolar process. For the moment, the two distribution functions will

remain unspecified to maintain compiete generality, but it is worthwhile to note

I-7




that in virtually every conceivable case of interest, the phase space distribution
function is separable into a spatial distribution fuaction (i.e., number density) and
a velocity distribution function. For example, for a uniform ambient atmosphetre

in thermal equilibrium at temperature T, fa (va) would simply become

- m 372 m_ va2
fa (Va) = By 2 kToo €xp T2 lrcTo0 (2-6)

where L is a constant number density (in the context of Eq. (2-6)), and the rest of

the expression is the usual Maxweliian velocity distribution.

Combining the expression for n, Eq. (2-5), with the expression for the plume

radiance N, Eq. (2-4), yields the following:

o0
I S . 3 3 C(E -
No= in f dr / dER f d v, j d Ve EN (ER, W, wz)

LOS 0
(2-7)
| dg - =
x Va Ve 0 E fa (Va) fe (Ve)
R
If the two distributions are separable intc two distinct pieces,
fa (va) =N, 8 (Va)
{2-8)
fo (V) = n, 3, V) ,




it
I

)
\
JRCSE———

s
|

el GESES WS O NND SRS 0 GEREE AU EEEE AR GO GWOaa WOy veTEe eem e GRS POWN e

then

nane * 3 3
N = ]dr an f dER fdva[dve

LOS 0
(2-9)

do - —
3 E. E, g, (Vo) 8, (Va)]

where g (V) is a velocity distiibution function (units: (velocity)-3), n, is the
number denstiy of the relevant plume species, n is the ambient number dencity,

and n, and n, {expressed as D a (r, t)) are both functions of time and position.

This expression for the plume radiance, N, along with the detailed calculations
of EN (Ep; W}, wy, 00 /0 Eps
plume hickground interference analysis. The resulte of the separate calculations of

n, and n_, form the basis of the present far-field

n, 0, oo/3 E_,, and EN can be used in an expression like Eq. (2-7) to calculate

a plume radian(}; for a sensor line of sight. This formulation of the plume radiance
problem s appropriate for calculating the power falling on some given detector. If
more detailed information is desired, plume radiance contours and a somewhat
different formulation are required. In the present context, however, it should be
emphasized that the individual calculations to be described in the following sections
of this report are independent of the details of the exact radiance formulation, and
can be used in more detailed plume radiance calculations, or in radiance formula-
tions that relax the short radiative lifetime or spatially homogeneous assumptions

discussed above,

1-9




3. ATMOSPHERIC PENETRATION OF EXHAUST PLUMES UNDER
RARIFIED FLOW CONDITIONS

3.1 Introduction

The flow pattern set up by the interaction of an exhaust plume generated by the
continuous firing of a rocket motor and a tenuous atmosphere has been intensively
studied in recent years. Most of this work has focused on those domains of motor
thrust and operating altitude permitting this interaction to be described on the basis
of continuum fluid mectanics. At altitudes sufficiently high for the ambient mean
free path to become larger than the continuum interaction length scale, the analysis
of such a flow must be based on the kinetic theory of gases. Under these conditions,
the length scale associated with the atmospheric penetration of the exhaust plume is
\,’X/Kn, where A is the nozzle exit area, and Kn is the Knudsen number based on
\/7\— and the mean free path, based on average exit conditions (Muntz, Hamel, and
Maguire 1970)!9) This scale is, tvpically, much larger than the dimensions of the
vehicle carrying the motor, since ¥n << 1. The presence of the vehicle itself may

thus be ignored in analyzing phenomena on this scale,

When the penetration scale is small compared with the ambient mean free path,
the response of the atmosphere to the presence cf the plume is decoupled from the
process by which the atmosphere modifies the vacuum plume expansion. This
situation is appropriate to moderate-sized engines, such as those employed for
attitude cortrol or inaneuvering purposes in the upper atmosphere. The spatial
separation of these two phenomena has been exploited by Brook and Hamel (1972)(,10)
in their study of a spherical source interacting with a stationary background gas.
Baum (1973)(11) considered the expansion of a transient exhaust plume into a
rarefied atmesphere by invoking equivalent assumptions about the scales associated

with the 1ateractions occurring in that problem .

PRECEDING PAGE BLANX-NOT
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The present work is concerned with the penetration of a hypersonic ambient
strain into a steady-state exhaust plume under the conditions stated above. The
exhaust gas properties are computed from a simple model proposed by Hill and
Draper (1966)(,12) of the continuum expansion of a jet into a vacuum. This expanding
jet serves as a diffuse scatterer of ambient molecules. The scattering is represented
mathematically by the Krook collision integral. This formulation leads to an
analytically interpretable and computationally tractable integral equation for the
ambient density distribution, The molecular distribution function is described
analytically in terms of the density. The distribution function is bimodal, with the
unscattered molecules peaked about the uniform free-stream velocity, and the scattered
gas convected with the local macroscopic exhaust velocity. An asymptotic, analytical
solution to the integral equation is obtained. This result is used, in conjunction with
direct numerical solutions, to obtain illustrative flow patterns for both axially symme-

tric and nonsymmetric configurations.

3.2 Mathematical Formulation

The formulation of the model will now be considered in detail. The penetration
scale is assumed to be sufficiently small compared with the ambient mean freepath
for collisions between ambient molecules to be ignored. The kinetic equation for
the ambient, molecular distribution function f(;c., :v.) is a modified version of that given
by Gross and Krook (1956),

i

v wmne -f)

Q@ (@
S

(3-1)

=
2\
i
—-
a
e
-t

I-12




YRR SIS

Here n ()—5 is the ambient number density, and Ny l_l;, Te are, respectively, the
exhaust gas number density, macroscopic velocity, and temperature. The maximum
velocity of the exhaust gas is —U'IW while the cross section o, entering the expression
for the collision frequency w, is an effective momentum transfer cross section.

The relation between the momentum transfer between species computed from Eq. (3-1),
and that given by Gross and Krook (1956)213) is explained in Baum (1973)Sll The
mean relative speed is taken to be that between G.M and the ambient wind ;1; , because
the exhaust and ambient speed ratios, We and W_ , are large under the conditions of

interest.

The exhaust properties are assumed in a modified version of the form devised
by Hill and Draper (1966)€12) The adopted forms are equivalent to the Hill-Draper
model far from the engine, but take on the prescribed nozzle exit values at x = 0.

The relevant equations are:

2 2
- A -
n, ) BAexit exp [ L cosG)J
n 2 2 2
o ro+ BAexit exp { A, (1-cosB) }
T n y-1 -
= - (_ne) a - (3-2)
o o €
uz kT u
e, Y e . M _ % Ly 2 1
2 v-1 m, 2 2 v-1 2

M
o

The parameters B and \ are given in terms of exit properties by

5 .'\oo uo
(/% Uy
(3-3)
" -1
1 0 1
. T = 1- 1+ —)
® v UM YM




The nozzle exit number density o speed U temperature To, Mach number Mo’

:

; aud the ratio of specific heats y are determined by the engine parameters. The

‘ exhaust properties are expressed in a spherical, polar coordinate system, centered
about the unit thrust vector ’t\ The polar angle is §, and the azimuthal angle ¢ is
measured from the piane containing the wind and thrust vectors. The wind vector

: makes an angle ¥ with the thrust vector. Thus (see Fig. 3-1)

A
r

A A A
r (t cos§ + j sinfcos¢p + k sinfsing) = r r

N A
u_ (tcosy + j siny)

- A
; Vv

,
i

N A . . A
= V {cosgt + singcosnj + sin sinnk)

All quantities with a caret superscript are unit vectors. The system of Egs. (3-1)
through (3-3) must be supplemented by the boundary condition that, far from the

k- plume, the flow is uniform.

o

, — 3./2 s — —
1 L f(x,v) = n_ < - ) exp {—m— (v—ucc)‘ = f

o
r—= o

(3-1)
3 * VET /m

Heren ,n_, and T are, respectively, the ambient number density, velocity,
> 0] 00 o0

and temperature far from the plume.

The representation of the exhaust gas displayed in Eq. (3-2) and (3-3) descrihes
the expansion into vacuum of a continuum jet plume. The motion is isentropic and
is energetic. The density distribution (and, hence, euch displayed fluid quantity)

2 satisfies the inviscid equations of motion asymptotically, far from the nozzle exit.
The angular dependence of the asymptotic density distribution is chosen as an

3 empirical curve fit to numerical methods of characteristic solutions for a variety of
engines. The expressions for the parameters B and ,\oo ensure global conservation

of mass, momentum, and energy.
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Nozzle Exit at Origin,
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Figure 3.1 - Coordinate System Geometry.
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The continuum description of the exhaust gas ultimately breaks down as the plume=

)

expands. The rarefaction process has been siudied by Grundy (1969)(,14 who shows
that, except at large angles @, with respect to the thrust axis, the deusity and velocity
are given by the continuum solution. The radial component of the pressure tensor, on
the other hand, does not continue to decrease isentropically, but levels off at a finite,
"frozen'' asymptote. The Mezch number corresponding to the freezing temperature
is typically very large, on the order of 10-20 for most angles §. Under these
circumstances , the interaction between ambient and exhaust gases is nearly indepen-
dent of the local plume ternperature, as shown by the assymptotic solution attained

in Section 3.,

The next step in the calculation is the construction of the fundamental integral
equation for n(;c.). Following Anderson (1965)515) Eq. (3-1) may be written in

characteristic form as

v Td" f(—x.+ffs) = (;+Q/s) nlq> (_;-!-\Als) - f
° \
(3-5)

r=x + Vs

This describes the evolution of f, at any point ;., a distance s along a ray through
the field point )—\: in the direction Vv (Fig. 3-2). Now integrate Eq. (3-5) from minus
infinity io the ficld point s=o, applying the boundary condition represented by Eq. (3-4).

The result is
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0
*
e o + —%,— j ds'w(x+<l\s') ¢(x+$s‘)e—T/Vn (x+$s')

-

O
T= J'w(}'ﬁ‘zs) ds (8-6)

- 00

o
* — A
T = w(x +vs) ds

S!
/ 3/2

—- A _ m ) m _ 2 1 N R

d(x+vsh) = ng <2kTe/ exp\ —-—-—-Zk,re [V uecosa] 5 We [1 cO0S a]

ANNP [COSECOSB + sinésinfcos UI“#’)} r+s'
{rz + (s()2 + 2rs' [cose cosf + sin@siné cos (n-cj;)]

‘ 1/2

cosa =

u_, and T in Eq. (3-0) is < +vs'. Note that the V dependence
sinceC’ depends only on the angle variables £and 1.
sing the definition of u in terms

The argument of n.,
is now displayed explicitly,
The integral equation follows from Eq. (3-6), by u

of the distribution function f.
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n=] sin £dt [dn/vzdvf
o] o o

Thus
™ 2+
2. 1 i V) exp -Lw? (1-cos?
o e f sintd¢ [ dn {H4 (Wo0 cosp; T Vir ) exp [ 5 W00 {1-cos (3):]
o] o €
(3-7)
7 VES ey l
m N m - l 2 _ 2 n A
+f ds'w KTe H3<Wecosa, T* kTe ) exp [2 We (1-cos a)] n_ (i’+vs')‘

- 00

cosf3 = cosécosy + sinfsinycosy

Again, all exhaust properties inr Eq. (3-7) are functions of %+Vs'. The functions

Hn (p,q) are defined by:

(o o]
H, (p,0) = —= f avv"? exp {-; W-p)” - /v
VZﬂ o

Anderson and Macomber (1964)(16)

together with tables forn =1, 2, 3. Eq. (3-7) determines the spatial density

contains a detailed analysis of this function,

distribution of the atmosphere as it penetrates the plume core, while Eq. (3-6)
expresses the distribution function in vcinus of n, In this form, the equations are
too complicated to be useful. However, by utilizing the fact that, in many cases of
interest, both We and W_ are large, Egs. (3-6) and (3-7) can he reduced to a

tractable form,
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3.3 The Hypersonic Limit

Consider the first term in the integral Eq. (3-7). For large W_ , the expo-
nential factor suggests that the integrand, considered as a function of £, is strongly
peaked about cosB2 =1, Examination of the H, functions reveals that Hn’ con-
sidered as a fimction of p, is exponeutially small for large negative p and propor-
tional to pn"2 for large positive p. Since the dependence of Hn on W_ for large
positive p is weak, part from a purely multiplicative factor W__ n-2 , the dominant

contribution to the ¢ integration should come from the neighborhood of cosg = +1.

To proceed formally from these ideas it is more convenient to do the £ integral

first, and employ the variable x=cos£ . The integral under consideration assumes

the form:
1
1= dx H,(x) ex L w 2
4 p 5 W B8(X)
-1

2
gx) = 1- {xcosw + V1-x sin\ycosn} (3-8)

Applying the method of steepest descent to (3-8), the saddle point is at:

cosy

\ll—sinzxpsin2n

X = %

* \/l—sinzw sin2n

n

cosf3 (XO)

Both saddle points are real, but the contribution from the one associated with the
minus sign is exponentially smaller than that associated with the positive value of

coso, and is henceforth ignored. The integral I is now readily evaluated as:
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1 2
-7 W, 8(Xp)
2 T 2 T . m
W"oo' ‘,g"(xo) e H, (W‘,C cos 8;T(X,) k——Too )

a2 2
8(X)= sin‘ysin'y

2
g"(Xo') = ) (l“Sinznsin2\‘:)
1-X,
_ cosy _ e 2 !
X, = cosf cosf3 \fl sin y sin™y (3-9)

Using the result (3-9), the integration over n may be readily performed. The
required integral is then:

Examination of this expression when W__ siny >>1(i.e., the undisturbed flow is
neither parallel nor anti-parallel to the thrust vector) shows that the dominant
contribution comes from the saddle point at = o. The apparent saddle point at

7 = 7 is spurious, with the result that:

n‘
Wy
-3
—-
Sy
1
€=
=
||
(=}
e

(3-10)
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A separate calculation when W_ siny is 0(1) (but W >>1) yields the samwe result for J.
Physically, Eq. (3-10) states that the overwhelming majority of the unscattered

ambient n.olecules are aligned with the uniform wind upstream of the plume. A
similar analysis (the details of which are presented in Appendix A) may be applied to

the homogeneous term in Eq. (3-7). The hypersonic limit of Eq. (3-7) then becomes:

y
n _ 1 , .
L -PH4(W°°,QOO)+] dy' KG¢', y) - )

[o0]

1 , -
* W— H3 (We) qe) (3 11)

W, = Wy, 9, = a,(y)
cose = cosfcosy+ sin@sinycosep
y = r@a) 2 o)
(Kn)-1 = nocr(BA)l/2
A, = ,fkfrnoo T (+is), q, = kr;e T*k+ts!) (3-12)
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The intomogeneous term in Eq. (3-11) contains the variable q_ =V ir T (k+4s),
where 3 is a unit vector in the direction of the undisturbed wind. This oqouantity is
directly proportional to the number of collisions experienced by a molecule traveling

in a straight line from infir..cy to the point in question in the direction of the undisturbed

wind. Written explicitly, it has the form:

u 2 u 1/2
© 1+ (—M—> -2 M coss exp {-A 2 (l—cos#)z}
qOO - uoO uOO *
W =y dt > /
s} -0 2 Kn 2 2
L+t +2tcosB* + = exp -A, (1-cosp)
y
cosg + tcosy
cosy =
,/ 1+t2 + 2tcosp *
*
cos§ = cosf3* +t
J 1+t2 + 2tcosB *
cosp* = cosycosg + sinysinBcosoé (3-13)

As y ==, the number of collisions vanishes and the inhomogeneous term in
Eq. (3-11) approaches unity. As y — o, the number of collisions experienced becomes
very large and the inhomogeneous term vanishes exponentially. The number of
collisions also hecomes large when ¢ = 0 and 6 =v , since the molecule has then had
to traverse the near singularity in exhaust gas density at the origin. Physically, the
ray on the opposite side of the nozzle exit from the wind is shielded from the ambient

molecules for finite distances r from the exit. The nature of q_ rear the singular ray

1-23



R T R A T T S TN N W T, TREE T

A

corresponding to cos@* = 1 may be analyzed as follows: The behavior is dominated
by the singularity at cos 8* = 1, as y approaches infinity or Kn vanishes. Thus, the
quantities cosu and cos§ in Eq. (3-13) may be replaced by their values at cosg* =1,

i.e.

m

cosu -cosy, 1+t<0
cosu = cosy, 1+t >0
cosd = -1, 1+t <0
cos§ = 1, 1+t >0

Upon inserting these values into Eq. (3~13) the integral for g, may be evaluated

explicitly as:

n

0 a

9 1 M 2 2 —1 -1 [-1+cosfB* ™
— = = + — - 5 = —
y <1 3 exp [-\ (1 + cosy, [a tan < )+ 5a

¥ 1.u_UM- exp ['Aooz (1'0054')2] [é—tan—l <c—g§&k>-tan_l <—1+§osg*>}}
2
1/2
a = 1"00523" + (&;p_> exp [-.'\w2(1+cos4/)2]
2
. V; , 1/2
b = I ] _COSZB* +(K7n_) exp [-A\ooz (l-cos\P)z] (3-14)
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This expression is exact along the singular ray cos@* = 1, where it reduces to:

2 2 l
P - !/ “Aw A
—Woo =-%(Kn) ll\l +‘-1~u%> exp [-—2-— (1+cos¢)2] + 11 —U—M;- exp I.T (1‘005'#)2]’

(3-15)

Along the singular ray, the hypersonic approximation breaks down for large y, since
the boundary condition at infinity requires q, to vanish there. Actually, unscattered
molecules arriving from directions other than that of the freestream flow reach the
ray 8=y, ¢ = 0 for large y, permitting the boundary condition to be satisfied. Along
any adjacent ray corresponding to a fixed value of cos8* such that cosB* # 1, when
(Kn/y)2 is sufficiently small compared with1 - cosZB*, Eq. (3-14) reduces to:

£
8

|
= _1;_ \[1 -cosZB* '<1+:—-M—> exp ‘:—\j (1 +COSW)2}

o0

(3-16)

exp [— Aw2 (- cos\p)zl}

Thus, the boundary condition at infinity is recovered, but with increasing slowness as
the singular ray is approached. Note that the quantity y \}1 - cos23* is proportional
to the distance in the plane perpendicular to the ray 8* = 1 from the ray to the point

in question. The ''shadow'' region is then a cylindrical tube surrounding the singular
ray. Since the inhomogeneous time W -2 H W, q, ) is roughly an exponential
in(-q_ /W ), the width of the shadow region is given (in units \/—1—\ Kn ) by the
factor multiplying (y V 1-cos B*) m Eq. (3-1v),
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Now consider the homogenous term in Eq. (3-1i). The variable q, =(m/kl'g)T*

has the explicit form:

q u l uM 2 1/2
e -1 00 1 2 2
Wwion —(Kn) © ——=~exp (- 5 A~ (1-cosg) 1+— -2 ———cose
Wel) U, (") | 2 = l Yoo Yoo d
-1 —JL_ 1 2 ZW
tan Kn €XP g A (1-cosg)
r b
-1 |y 1, 2 2
- tan Kn €XP 3 Ay (1-cosg) (3-17)

The quantity 9, is proportional to the number of collisions experienced by a molecule
initially penetrating to a distance y' along a given radial ray as it travels outward
along the ray to the field point at y. Note that qe/\'\"e()") becomes very large (0 (Knnl)
forg < 60° and realistic values of A, andu_ /uo) at y' = 0 for fixed y. Since the
function H3 (We’qe) is roughly expon~.ntial in (- qe/\\'e), the probability that those few

molecules deposited upstream of th it can penetrate to the other side is very small.

Moreover, the contribution to a ity at any point from molecules scattered radially
inwardtowards the nozzle is ex, 11ly smaller in Wez than that from molecules
scattered radially outward away t he nozzle, For these reasons, the lower limit

of integration in the homogenous terun of Eq. (3-11) 1s the origin. Similarly, the
overwhelming preponderance of outward scattering events means that there is no
contribution to the number density at y from points y' > y on that ray. Further
details are given in Appendix A. Finally, the functions H,, may be simplified by
applying tl e method of steepest descent once again. The result, valid for p>>1 and

Z =qbh 3 finite, is the first term in Anderson and Macomber's (1964)(16) asymptotic
expansion:
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H (P,q) = ( Ak 3)1/2 exp _tizz [1+-§- _Z?T:l}
1+2Z/to

[ 5~1/3 3 ]1/3
1,z 1.,/2 2 12,1 _1Z 7
13 2 " 27 27 2 27 27 4 ]
3
Z = q/p (3-18)

Note that as g=o, H_(P,0) = pn_z, while for large q>o:

(n-2)/3 { 3 2/3}
H ~ _q__7_ exp \- 5 4
n (3/2)1 2 2

The quantity pZZ in the exponential is equal to q__ /WQo in the inhomogeneous term of
Eq. (3-11), andto a, /W in the homogeneous term. These quantities are independent
of W_ and We’ respectlvely Thus, the quantity W and “e ent_%r the H, functions
only through the quantity Z, which is formally O(W ) or O(Wg ) for f1xed v,
These terms are retained in Eq. (3-18) to allow y to vary from a moderate multiple
of Kn to values>> 1. The principal effect of this variation is to shift the location of
the saddle point t, for radius of y < % Although the shift is not large, the presence
of the quantity t, in the exponent of Eq. (3-18) can change the computed value of

n/noo at a given location by as much as a factor of two.

The physical picture represented by Eq. (3-11) may be summarized as follows:
Molecules entering in a beam parallel to the undisturbed flow are scattered out of the
beam by the exhaust gas, which is unatfected by the process. The scattered molecules
are thus deposited along each radial ray in accordance with the inhomogeneous term
in Eq. (3-11). The molecules are then caught up in the radial expansion and swept
away from the nozzle, undergoing additicnal collisions as they proceed radially out-

ward. The speed ratio of both the incident beam and the scattered gas is so high that




the thermal spread in molecuiar velocities may be igr~red, in comparison with the
velocities considered. The exhaust gas density is so high in the vicinity of the nozzle
exit that no molecules can penetrate this region. As ihe radial distance from the
nozzle exit increases, the penetration process becomes more efficient. Ultimately,
the exhaust gas density is sufficiently low for the ambient molecules to pass through
the plume undisturbed, and the ambient density is recovered. The phenomena outlined

above are illustrated schematically in Fig. 3-3.

The remainder of this paper deals with the solution of Eq. (3-11), and the
computation of two examples. The following section contains an asymptotic, analytic
solution of this equaiion, valid far from the nozzle exit. Section 3.5 discusses the
computational procedures employed in the direct numerical solution of Eq. (3~11) anc
in the evaluation of the asymptotic result of Section 3.6. The analytical and numerical
methods explained in these two sections are applied to an axially symmetric flow

(¢ = 0) and a nonsymmetric,''side blowing'" flow (y = 900) in Section 3.6.

3.4 The Asymptotic Solution

When the radial coordinate y is 0(1), the solution to Eq. (3-11) may be readily

obtained. Under these circumstances, ue(y') approaches u,,, while qe/we becomes:

M’
q Yoo uy) uy ] . s 2| (1 1
“?; T — 11+ (-—) -2— coseJ exp [— .\oo“ (1-cos@) (-7, - —,)
e v Yoo Yoo ¥y

(3-19)

Thus, qe/We is 0(1), which means that the quantity Z = qe/\?\‘es in the function H3

may be set equai to zero, reducing H3 to an exponential. Eq. (3-11) then reduces to:

1-23




ST e T BRSO amers . o T

LTS

R

Cras i L

B3 AN S R i

.

o P STy

uo13oBISIU] [BOOJUON JO DIIBWSYDS - € ¢ dandid

Alepunog 840y se Jsneyxi

[-29

uoty1sodaq Ses) PaJanedsun




y

1
[1:1—;0_ T w2 H4(y>] Iy = fo dy* G(y") i(y»

5 1/2
. u . u
Jy) = y'2 exp |- o?, 1+ (u—M— - of M cose.]
‘M oo oo J
e 2‘
exp {-A. (1-cos§) ‘
1/2
u u
Gly) = ) = 1+ oy -2 M cose€
2 u
y u}\‘[ [2e] o0
2 2
exp [— .\oo (1-cos§) J (3-20)
L

Equation (3-20) is readily solved by difierentiating with respect to y to obtain a first-
.2 .

order differential equation for the quantity [n/nx, ~ /W H4(y)] J{y). Examination

of Eq. (3-20), as y approaches zero, shows that this quantity should vanish at the

origin. Thus:

v
u
2 2 1
[n_n__ e 2 H4(Y)-i = 3 =z exp [— A, (1-cos @) ]j dy' —5 H, () (3-21)
® “co B Y uN[ o “oc

The function H,(y) can be simplified in a similar manner away from the singular ray.

The function q  then has the form:
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o 1/2

q :f N [1 + (uM/uw)Z _ 2<u,M/u°o)coss]

1+1%+ 2tcosB *

exp [~ ,\ooz(l -COSp )2]

Then, provided that the numerical value of ) on the ray under consideration is not
too large, q /Wof may be set equal to zero in the function(l/W 002)}{4 W, a,)
thereby reducing it to an exponential in (- £/y). The quadrature on the righthand side

of Eq. (3-21) may then be evaluated in terms of the exponential integral function

E2(Z). yielding the result:

9 1/2
LI __1_:2 Hy (W, q ) + 1+ u—M 2 (U—M— cos€
noo \\"oo uMy uoo o0

The first term 1n the solution (3-23) cculd also formally be replacedby exp {-.Q./Y}
to the present nrder of accuracy. However. the analysis in this section can be
interpreted as zn attempt to find an approximate expression for the scattered gas

comribulion to the number density, as represented by the homogeneous term in
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Eq. (3-11). The second term in the solution (3-23) is the desired result, as is the
righthand side of Eq. (3-21). However, the other expression is too complicated to
study analytically, and sufficiently expensive in computer time (relative to the direct
numerical solution of Eq. (3-11))to warrant its use without the further approximation

represented by Eq. (3-23).

Now consider the behavior of the solution as a function of y and 8. For small
y (assuming for the moment that the asymptotic solution is at least qualitatively

correct) the function Ez(.Q./y) has the asymptotic expansion

-Qy
~ Y€
Ey ~ 0

o (@)

The scattered gas contribution becomes very small as the nozzle exit is approached

because few ambient molecules are able to penetrate the dense region of the plume.
For large angles @, the factor exp {— .\002(1—0039)2} (representing the angular

dependence of the exhaust gas density distribution) cuts off the scattered gas contri-
bution because there are so few exhaust gas molecules to serve as scatterers., For

large y, E, (2/y) may be approximated by:
E, ~ L] log (Q'-)

Thus, the scattered gas density rises to a peak, then decays much more siowly with
increasing y. The decay is caused by the increasing volume in the plume available
to molecules scattered much nearer to the nozzle ana then convected radially outward.
The additional local scattering far from the nozzle contributes weakly, accounting

for the logarithmic factor in the scattered result. However, the exhaust gas density
ultimately decreases to the point where the unscattered contribution dominates,

permitting the uniform boundary condition at infinity to be recovered.
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3.5 The Numerical Computation Procedure

The numerical computation of n/nOo requires the evaluation of the inhomogeneous
term in Eq. (3-11) or Eq. (3-23), together with a procudure for calcvlating the
homogeneous term in the integral equation. The evaluation of the asymptotic approxi-
mation to the Hy functions is straightforward, as is the computation of the function E,,
as a function of its argument. Hence attention is confined to the computation of q_ ,
which determines the value of the inhomogeneous term; and to the evaluation of the

homogeneous term in Eq. (3-11).

The computation of the integral defining q_ will be considered first. Note that
the integrand is not singular in the entire range of integration, since its denominator is
equal to or greater than one throughout this range. However, a\s is shown in Section 3.3,
the limit of q  as y > and cosB* » 1 is non-uniform; that is, the value of the limit
depends on the order in wnich these two limiting processes take place. Numerically,
this non-uniformity means that cne must be very careful in evaluating this integral
when both y is 0(1) or larger and cos 8* is very close to 1. For such values of y and
cosf3 *, most of the contributions to the integral come from points very close to t = -1,
and the accuracy with which cos® and cosp can be evaluated at these points is limited

by the arithmetical precision of a computer.

A close examination of the variation of the integrand J of Eq. 3-13 with respect to t
shows that the integrand varies smoothly in the entire range of integration, so long as
cosf3 ¥ is not close to 1. For cosf3 * near 1, the integrand has very sharp variations
near t = -1, and a peak value in that neighborhood. For cosf3 " - 1, the peak of the

integrand is exactly at t = -1, and is discontinuous.

In view of the above described peculiarities at the integrand J, the following
method was devised to compute the integral. The integral, I, is divided into two

parts, IL and IR:
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I = IL + IR
-1—61
= 3
IL / Jt,y*)dt
-~
o
. IR = J(t,y*) dt
—1+452

where € and €, are two small positive numbers. € is chosen such that the omitted
part of the integral, from —1-61 to -1 divided by IL’ is equal to the specified fractional
tolerance (TOL) for the computation of the inhomogeneous and homocgeneous terms. €,

is chosen in a similar fashion. It can be shown that, for cosf3* =1, € and 52 are

given by:
\ 2
BT 2
- —— (l+cosy)” .
_ T 2 ( Kn
€1 = jr'TOL e —;—
2 2
Ay 9 A 9
TS (1-cosy) 5 (1-cosy) Kn (3-24)
€ = TOL e arctan r*e 5

Equations (3-24) are, in fact, used to compute € and € for any value of cosB*. It

can be shown that these values of € and €, are smaller than the required values, thus

resulting in smaller values for the omitted parts of the integral,
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1, is computed in steps At of the integration variable t, starting from t = ~1—€1,

and advancing to the left towards t =-o , The magnitude of each step At is determined,

Wwew AW NS N

such that the integrand cl.anges by about one order of magnitude in the range of the
step. The contribution to IL from each step is completed through a six-point Gaussian
integration. IR is computed in a similar, steplike fashion, starting from t = -1 +€2
and advancing to the right towards the origin. Iy and IR are computed concurrently,
so that the total integral I is progressively built up from both sides of the point t = -1.
The computation of Iy is terminated when the most recent contribution to Iy, divided
by the accumulated I, is less than the fractional tolerance, TOL, of the computation.

The computation of Ig is terminated in a similar fashion, or when the origin is reachea.

Now consider the calculation of the homogeneous term in the integral equation.
For computational purposes, it is more convenient to work with the radial coordinate

r* , defined by:

r* = I - (k) ly (3-25)

N7

The 1nitial growth of the homogeneous term in this variable is slow and well-behaved,
taking place over the range 10 < r* < 100 along most radial rays. Letting the dimen-
sionless, inhomogeneous and homogeneous quantities in Eq. (3-11) be ni* and nh*,

respectively, this equation may be written in the form:

r*

n, (r*) = / K @', r* n* (r') dr' (3-26)
rl*

n *(r') = ni* (r") + nn* (r") (3-27)

cauns WANS GO OUNRE R BeeRe e




L S T P e, e L -
1 7 - :
e ———_ —
¢

"

In the ""exact'' definition of the integral equation, rj* is equal to zero. However,
in the numerical evaluation of the integral of this equation r;* can be much larger

than zero as will be shown later.

Now, consider the following mesh of points:

* % * * * * *
Ty*, T*, Tt TR o TR 3 T T

* = * -28
I+l ™ hm (3-28)

Note that, in general, a variable mesh size is assumed. Assume that the values of

n* are known at all points up to and including the point r;n . The value of ni'; at tae

next point, r’r*n+1’ is computed by the foliowirg procedure.

The integral of equation (3-26) is divided in‘o two parts so that:

n}"; (r;‘nH) = I1 + 12 (3-29)
where
r;“n+1
I, = f K (r', r* -’ % (r') drt (3-30)
r*
m
r*
m
12 = j K {r', r;‘nﬂ) n* (r') dr' (3-31)
r*

L is evaluated by the parabolic integration formula (3~B10} of Appendix B.
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Thus:

3

I, = - . K (r* ., r* . )n*r* )

1 6h (h. +h ) m-1 “m+l m-1
m-1‘'"m m-1

+ 5% K (r’r"n, r;"n+1) n* (r;"n)
m-1
hm (3hm_1 +2 hm)
Y Teh_+h__) KA1 Tmer) [“"{ Cher) * 0 (rm+l)]

(3-32)
Substituting I1 from Eq. (3-32) in Eq. (3-29), and solving the resulting equation for

X (p*k 1 .
nh(r m+1)’ one obtains:

I + 1
n*(l* ) = l 2 ‘R * *
hY " m+1 1 -[hm(ahm_l + 2 hm)/6(hm + hm-l)] (% o1 Thay)

. . o . *
where I'1 is ecual to Il’ as given by Eq. (3-32), with n’}“l(rmﬂ) set to zero.

As can be seen from Egs. (3-31) and (3-32), the righthand side of Eq (3-33)
involves:
(i) The values of n* for all points up to and including the point r;"n, which are
known; and

(ii) Thevalue of n"{ at the point r*

o which can - evaluated separately.

Thus, the righthand side of Eq. (3~33) involves quantities that are known, or can be
evaluated independently of ni'; (r;‘nﬂ); therefore, Eq. (3-33, is an explicit expression

v (p*
for the unknown 0y (rm +1).
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12 is computed by successive applications of the parabolic integration formula
(3-B11) of Appendix B to three points at a time, starting with the point r;"n and
advancing to the left towards the point r’{. The reason for computing 1) backwards,
in this way, is that the kernel K(r', r;;wl) decreases sharply as r' becomes smaller
and smaller than r;';l , and thus the contributions to I, decrease sharply. This means
that the computation of I, can be terminated when & desired accuracy is achieved,
much before reaching the initial point r’i‘. The computation of I, is terminated when
the most recent contribution to Iy, divided by the sum of Iy (accumulated) and 1'1, is
smaller than a specified fractional tolerance (TOL), which is also the tolerance
within which n% is computed. If m is even, and the computation of I, must be extended
all the way to r’{, then the last contribution to I, is from two points, rather than
three, namely, points r* and r* , and formula (3-B9) of Appendix B is applied instead

2
of formula (3-B11).

The procedure described above for the computation of nﬁ requires that ni’l‘ be
known at the first three points, r*, r} and rg. The value of ni‘; at rf is the initial
condition of the problem, and when r} is taken equal to zero, one has the ''exact
initial condition'' of the problem, which is n}";(O) =0. A close examination of the
situation reveals that, as one travels along a radial ray from the origin outward, n"i
decays rapidly from 1 to a very small value, then increases back to 1, while n’ﬁ
increases slowly from 0 to some maximum value, then decays back to zero. Thus,
in the numerical evolution of ni"l, a great deal of computer time is saved, without any
loss in accuracy, by strrting the solution of some r{ larger than zero, with the
approximate initial condition n;‘l = 0 at r’{ . r’{ is selected so that it is in the region
where n"i‘ has its minimum plateau. The rapidly decaying kernel annihilates the

errors associated with this approximate initial condition. Thus:

nﬁ (r’{) =0 (3-34)
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The value of ni"l at r; is computed by evaluating 1 1n &q. (3-30) through the
trapezoidal rule (12 in this case is, of course, equal ‘o zero). As for the value of

ni"l at rg, it is computed by evaluating both I1 and I, in Egs. (3-30) and (3-31) by

the trapezoidal rule. Thus:

h,/2 [k(r;, r}) n*(r;) + K(r}, r3) n"i‘(rBSJ

% * = - ~-35
oh (3 1 -(h1/2) R]rz, r* (3-39)

o)

1/2 [hl R(rt, r3n*(y) + (g +hy) K}, ) n*(r}) + h, K(r}, 1%) ni*(rg)]

nX(r¥) =
k3 1-(h,/2)K(r3, 13)

(3-36)
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*
m+ 1
in Eq. (3-33) can be small, or even negative. This must not be allowed since

If the integrating step, hm’ from r:‘n tor is too large, then the denominator

instabilities will result. Now, it can be shown that:

" * ~f % &N -
K<rm+1, rm+ 1/ < K(rm, rm) (3-317)
and, therefore, if the integrating step is chosen such that:

h o= S S— (3-38)
5 % %k
K Qrm, rm>

then the denominator of Eq. (3-33) is roughly equal to one to 0.5a. Thus, for suffi-
ciently small values of tne parameter «, instabilities can be avoided. The correct
value of « for a given radial ray cannot be defined a priori, but one anticipates that a
value between 0.1 and 1 should do. Indeed, in the applications discussed in the next
section, the value o = 0.5 was employed. This ambiguity in the right value of @
notwithstanding, Egqs. (3~37) and (3-38) show that hm increases as r:‘n increases, a
very desirable result. Another criterion for the selection of hm is derived by fitting
a parabola to the values of n:; at the three points, r:n_z, r:n—l
:n+ 1 where the fractional change in nl’: is a small number B, on
the order of 0.01 to 0.1. The value of 8 actually used is 0.05. The resulting value

of hm is compared to that given by Eq. (3-38), and the smaller of the two is selected.

, and r*m, then extrapo-
lating to a point r

For the two initial integrations with the trapezoidal rule, a sufficiently small integrat-

ing step is taken readily satisfying the stability considerations discussed above.

The computer program is in FORTRAN IV, and has been run successfully on the
UNIVAC 1108 system. Before final production runs were made, the accuracy, stabil-
ity, and efficiency of the program were investigated through several test runs, by use

of a trial integral equation whose exact solution was known.
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The procedure for calculating n;‘ works very well for any value cf r*, so long as
cos [3* is not equal to 1. For cos /3* =1, the computer program is only accurate
for moderate values of ri However, the solution is not physically meaningful for
o sufficiently large for y to be 0(1) on this ray. The procedure for calculating n;
is stable and accurate. It is efficient for values of 6§ equal to or less than about 45°
if an accuracy of 0.1% (TOL = 0.001) is required. By accepting an error of 0.5%
(TOL = 0,005), the program can be utilized out to angles 6 of 60°, For larger values
of 6, the value of the parameter @, required for an accurate solution, is so small that
the integrating steps become very small, and a great deal of computer time is required
to obtain the solution. For such values of 6, n; can be computed much more efficiently
from the asymptotic expression (3-23), valid quite close to the origin for such large
angles. A computer program with the asymptotic expressions for n* has also been

h
developed, and works quite well,

For an accuracy of one part in a thousand (TOL = 0.001), it takes, on the average,
%
h

about 30 sec of 1108 central processing unit (CPU) time to compute n’; and n
radial ray, all the way from the origin to the value of r* where the ambient condition

along a

* is about three times

is recovered. The CPU time required for the calculation of n

*
that for ni .

3.6 Numerical Results

The theoretical and numerical analyses described in the previous sections have
been applied to the calculation of an axially symmetric flow ("aligned flow") § = 0:
and toa "non-aligned" case. § = 90°. The values of the remaining parameters needed
to uniquely determine the solution for n/noo were the same for both fiows. and are
listed in Table 3-I.

TABLE 3-I. Parameters Employed in Computed Results

Kn W uM/uOo v M0 m/me

10~ 6 0.3 1.3 4 0.8 ;
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The integral equation was solved directly, to an accuracy of 0.1%, on rays spaced at
five-degree integrals for 6 < 450, and with a reduced accuracy of 0.5% for values of 6
between 45° and 60°. Equation (3-23) was ised to obtain results for angles 6 greater
than 60°.

First consider the aligned flow: Figure (3-4) illustrates the relative magnitude

of the scattere 1 and unscattered contributions to the density on the 6 = 30° ray. Near
the nozzle exit. both contributions are small because most of the molecules in the
incident, ambient stream are deposited before reaching the 30° ray. Asy increases,
more molecules are deposited on the ray, and then convected outward by the exhaust.
Since the scattered gas at a given y station is an accumulation of molecules scattered
earlier, this juildup is quite rapid, and gives rise to the overshoot in density depicted
in the figure. The combination of the geometric relieving effect and reduced scattering
discussed in Section 3.4 then reduces the scattered gas contribution very slowly (note
the logarithmic scale) to zero. The unscattered gas density rises monotonically with

increasing y to recover the boundary condition at infinity.

The abcve picture holds qualitatively on all rays, with only the magnitude and
location of the maximum in the scattered gas contribution changirg from ray to ray.
Figures (3-5) and (3-6) show the development of the radial profiles with increasing 0.
Near the thrust axis, the recovery of the ambient condition is slowest because the
plume is densest., The density overshoot begins at about § = 150, and increases in
magnitude with increasing 6, until peak values are reached for values of § sli 1tly
larger than 6 = 60°. The location of the peak moves closer to the nozzle with increas-
ing 6. For larger angles, the density drops rapidly towards the ambient value, be-
causc the exhaust gas density is so low that no significant scattering takes place.

The results predicted by the present theory for values of y smaller than about
10_2, corresponding to r* = 10, must be treated with extreme caution. Since ral
measures the radial coordinate in units of exit radii (8 is about 0.3 in the present
example), phenomena on this scale may be strongly influenced by the details of the
geometry of the body carrying the motor. Moreover, even in the absence of a finite
body, the exhaust gos characteristics in the vicinity of the nozzle are not described
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accurately by Eq. (3-2). However, the solutions for larger y are not sensitive to
the behavior of the results for y 0(10_2).

T e density is plotted as a function of angle at several radial stations in Fig.
(3~7). The ambient conditions are recovered progressively later in the expansion as
6 decreases, since the region near the thrust axis is the least accessible to the atmo-
spheric gases. Figure (3-8) shows the corresponding curves for the windward portion
of the plane containing the wind and thrust vectors in the non-aligned case. The den-
sity distribution is qualitatively similar to that in the aligned flow. However, the
asymmetry is such that the recovery must be made slower on the leeward side (Fig.
(3-9)), because of the fact that the atmosphere must penetrate through the entire
windward portion of the plume before reaching these rays. The singular ray is now
atg = 900, on the leeward side. Although the model predicts some scattering along
this ray, the value of q_/W_ is O(e” AZ /Kn), which is less than 107° in the present
problem.
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APPENDIX A. HYPERSONIC LIMIT - HOMOGENEOUS TERM

The homogeneous term in Eq. (3-7) may be rewritten (inverting the order of

integration) as:

2 1 2r e — —é-W%(l-cosz a) I
S ds’ — g dn \sm&dg ——we H3(Wecosa,qe>§

A

(3-A1)

Here, cos « is given by Eq. (3-6), while the quantities Te' w, We’ and n/n_ are
functions of X + Vvs'. The basic assumption is analogous to that employed in Section
3.3, that the dominant contribution to the angular integrations over ¢ and n comes from
the neighborhood of cos & =1, because of the large factor Wi in the exponential in the
integrand of term (8-Al). By letting x = cos § be the first integration variable. the

exponential factor in tev.n (3-A1l) becomes:

2 r2

W ——————
¢ X+ 95 )2

% f(x)

(3-A2)

- ) -2
fx) =1~ xcosg + l-xzsin()cos(n-d))
S d
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Although the quantity multiplying f(x) in (3~A2) is itself a function of x, through its
dependence on the variable X + ¥s', the fact that it is large and positive for all values
of v means that the contribution to (3-A1) will be exponentially small, except for
values of ¥V corresponding to cos @ =1, Examination of Eq. (3-6) shows thatcos o =1

can only occur for v =r. Thus, the exponential factor (3-A2) may be approximated by:

- L2 rz.._._ f(x) (3-A3)
2 e (r + s’)2

We is a function of ?(r + s') in Eq. (3-A3). The method of steepest descent may now

be applied to (3-Al) in the same way that the corresponding integrals for the inhomogeneous
term were evaluated in Section 3.3. The result implies that the remaining terms in

the integral are to be evaluated at x =cos 9, 7 =¢. When these values are inserted

into the expression (3-6), then cos & =1, as required for consistency, provided that

s’ + r is positive. Where s'+ r is negative, cos & = -1, and the contribution to

(3-Al) is again exponentiazlly small in We’ this time because of the fact that the func-

tion Hy(-W_,q_) is o Ve/2

tion over s’ which remains in Eq. (3-A1), then the homogeneous term in Eq. (3-11) is

}. If now. the substitution r’= s’+ r is made in the integra-

recovered.
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APPENDIX B. PARABOLIC INTEGRATION FORMULAE
WITH VARIABLE INTEGRATION STEP

and x,:

Consider the following mesh of three points Xy Xy 3

Xp Xg =X+ hy, Xy =x, 4+ hy

and the following integrals of a function f(x):

Il,2 =§ f(x) dx

12,3 = S f(x) dx

I 4 = g £(x) dx

Obviously
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The objective here is to derive approximate expressions for these integrals, by
use for f(x) of the second-order, lagrange interpolating polynomial:

fl f

f(x) =m (\x—xz)(x-x3) "I h (x-xl)(x—x3>

where f1 = f(xl), and so on.

X

2
N
§ oo S e s
1

= (3h + 2hl> . (3-B6)

2
S (x-xl)(x-x3>dx=é’(xl—x2> (3x3—x —2x2>
X
1 hz
== = @y +h) . (3-£7)
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By substituting Xg by X, in Eq. (3-B7), one obtains:

X

2
_ .1 3
Jmmemm) = -5
%1
3
R |
T8 (3-B8)
Therefore:
hy(3hy+ 2h)  By(3hy+ ) 5
L2 = 6By By Lt e, f2- 6h, (B, + By) f, . (3-B9)

Furthermore, by interchanging h2 and hl’ and f1 and f3 in Eq. (3-B9), one obtains:

b Bo(hy* 3By)  By(Zhy+ 3hy
I, g=- ehl(h2+ hl) £+ h- f, + 6(h2+ h1) f, . (3-B10)

Finally, by adding Ecs. (3-B9) and (3-B10), one obtains:

f . (3-B11)

The error 1nvolved in the approximate integration formulae (3-B9) to (3-B11) is
of the order of h4. For hl = h2, formulae (3-B9) and (3-B10) reduce to the well-known
formula of Adams-Moulton, while formula (3-B11) reduces to Simpson's rule.
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4. CLASSICAL CALCULATIONS OF ROTATIONAL AND VIBRATIONAL
1 EXCITATION IN ENERGETIC ATOM-DIATOMIC HYDRIDE COLLISIONS

] 4.1 Introduction
j

Since 1960, literally hundreds of calculations of inelastic energy transfer
in simple atom-diatom or diatom -diatom collisions have been published. The
overwhelming bulk of this work has been pcrformed while using either the rigid
rotor approximation to study only translatioial-rotational energy transfer or a

collinear collision scheme to isolate translational-vibrational energy transfer.

Recently, a number of workers have published studies that treat the
problem of coupled vibrational and rotational energy transier in simple collisions.
These efforts include the classical, two-dimensional models of Benson and

(lg)which

Berend, a7 Kelley and Wolfsberg, (18) and Bergeron and Chapuisat,
aim primarily at elucidating the effects of rotational inelasticity on collisionally
induced vibrational excitation or de-excitation, Semiclassical, three-dimensional
treatments of this same problem have been presented recently by Wartell and

1
, Cross, (20) Stallc:‘.p(?”) and Sorensenszz) Other studies of interest incluce the
quantum mechanical treatment of the He-H

(23)
" (24)

2 collision system by Eastes and

which uses the He —H2 interaction potential calculated by Gordcn and
(25)

Secrest
Secrest and the semiclassical treatment of the Ar-H2 system by Shin,
which uses an interaction potential based on molecular beam data. Doll and
Miller(26) have also treated the He-Hg problem by using classicai S-matrix
techniques. In addition, Thompson(27) has been able to calculate reasonable
rotational and vibrational energy transfers for a number of atom-diatom systems
by using Monte Carlo classical trajectory techniques and semiempirical valence-

]
1
l bond interaction surfaces,
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The focus of the present work is the effect of vibrational inelasticity
on the rotational excitation of such diatomic hydrides as HF, HC1, and OH
in energetic collisions with atomic species. Classical, three-dimensional
calculations of rotational excitation probabilities for both rigid and nonrigid
diatomics in collisions with several atomic species are presented here, and
the effect of the rigid rotor approximation is evaluated.

4.2 Interaction Potentials

The coilisions of interest have center-of-mass energies in the range of
1to 5 eV. Such interactions occur well up on the repulsive core of reasonable
intermolecular potentials and are insensitive to the weaker '"long-range'' portions
of the poteatials. This insensitivity is exploited by adopting hard-sphere poten-
tials for the colliding species. Each diatomic is modeled with two interpenetrating
hard spheres, while monatomic species are represented by a single sphere, The
diatomics are either held rigid along their line-of -centers at a distance between
sphere centers fixed by the equilibrium ground-state internuclear distance of the
nydride in question or are attached along the line-of-centers by a one-dimensicnal

harmonic oscillator.

Sphere sizes for bound and unbound atoms are estimated from the high-
energy molecular beam-scattering data of the Amdur-Jordan group at MIT or
of the Leonas group at the Moscow State University. The sphere sizes selected
represent the effective range of one eV potential for the species in question and

are determined by methods outlined in earlier work on atom —HZO collisions. (28)

Equilibrium bond distances for the hydride molecules are taken from

Herzberg, (29)

and are shown in Table 4-1,along wiih hard-sphere radii for mole-
cular atoms and monatomic-~collision partners, Sphere radii for O, H, Ar and
He are taken from Ref. (28). The F-atom radius is based on data of Belyaev,

(30) 9.30

et al., which determined a potential of V(Ar-F) of 506/r , where \ is

expressed in eV and r in A. The C1 radius is estimated, since no pertinent
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molecular beam data could be located. The same radius and internuclear
separation is used for cases involving the isotopes 35 C1 and 3701. All other

atoms are assumed to have only the mass of their predominate isotope,

Table 4-1. Molecular Parameters

Molecular Atom Hard-Sphere Radius (A)
H 0.65
o O 0.88
Ef c1 1.18
; Monatomic Collision
; Partner Hard-Sphere Radius (A)
' He 0.63
0 0.85
Ar 1.12
Equilibrium Bond Average Geometric
Diatomic Distance = (A) Cross tection (AZ)
OH 0.9706 3.08
HF 0.9171 2.80
HC1 1,2746 4,92

4.3 Collision Mechanics

The choice of a hard sphere interaction potential reduces the analysis of
the collision process to a study of the configuration at the moment of inpact. The
calculation is most conveniently performed in the precollision rest frame of the
molecule. The rotational and vibrational degrees of freedom of the molecule are
assumed to be initially unexcited., Thus, the configuration is fixed in an inertial

frame at the collision instant.

R BEER BN N ) wonmp ey o Wmeng Wanay S~ [T
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Now consider the impact of the collision partners g with the molecular
atoms denoted by the subscripts 1 and 2 (Fig. 4-1). The conservation of momen-
tum, angular momentum, and energy are given respectively by

14 = f LS ot _
mq-"q mqu *omy Y, m, ¥, 4-1)

- 1 . t 1 —
T I RY) TMe LX), (4-2)
1.2

+ gmy vy (4-3)

-~

V

_ b
P

—4

Figure4.1 - Coordinate systems used to describe collision.
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The primed quantities denote post collision values of the atom velocities
ga(a =1,2,q), while Lo denotes the position of the center-of-mass of the
« atom with respect to the center~of-mass of the molecule at the instant of
collision.

In order to proceed further, it is necessary to consider the relationship

between the hard-sphere model and a continuous molecular interaction poten-
tial d)(‘x;) of the form

O(r) = 01 (Tiq) * 9 (Tag) * %“‘12“’2£2 ; (4-4)
r, =|rx -r |, @ =12 . d-5)

Here Fio is the reduced mass of the molecular atoms, w is the frequency o:
vibration, and ¢ is the amountby which the distance between the molecular
atoms has departed from its equilibrium value (the "spring" deflection). For
collisions sufficiently energetic to penetrate well up on the repulsive core of
either atomic potential, ¢ a(r aq)’ the local length. /. over which the interaction

occurs may be characterized by

-1

0¢
= (Fag = %o) (4-6)

o
ara

{ ~ o
q

The radius, r , is chosen so that d‘a(ro) is in the interaction energy range under

consideration. (28) The interaction time, 7, is approximately

[\V]
~

(4-7)

’é<
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The hard-sphere model may be regarded as the limiting form of ¢(r) as
b4 /ro approaches zero, provided that two further conditions are satisfied.
First, the rotational excitation must be such that lﬁl T << 1. The angular
velocity §2 is defined so that the impulsively generated angular momentum of
the molecule about its center of mass is If2, where Iis the moment of inertia.
Under these conditions, the magnitude of the impulse W transmitted to the
collision partner q is directed along the line connecting the centers of the two

colliding atoms. Thus,
mq (—Yq - ‘Yq) = _n_lw (4-8)

wheare 1, is the unit normal to the molecular atom.

The manner in which the impulse.—glw, is divided between the molecular
atoms is determined from the final condition that must be satisfied for the
hard-sshere model to be employed. I the frequency of the vibration is suffi-
ciently .ow so that w7 << 1, then the impulse is transmitted before the "spring"
can deform. @1) Since the impulse must be transmitted to the second molecular
atom via the vibrational mode, the instantaneous post—collision state of the
molecule nust be such that the molecular atom experiencing the impact absorbs
the component of the impulse directed along the spring axis, k. (See Fig. 4-1.)

-n ]’('\V =m.v. » }.i . 4-9)

1 11

If, on the other hand, the vibrational frequency is sufficiently high so that

wT >> 1, then the molecule will behave like a rigid rotor. and Eq. (4-3) must

be replaced by the condition(sl)

£ty =0 (4-10)
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When wr is neither large nor small, the use of the hard-sphere model cannot
be justified on the basis of classical mechanics. However, in order to apply
the ciassical approximation to a2 molecule containing a vibrational degree of
freedom, the classically computed vibrational excitation must be much larger
than the energy hw needed to excite that degree of freedom. When this is not
the case, the rigid rotor assumption [ Eq. (4~4)] may still provide a useful
approximation to the rotational excitation, even though the ~ondition w7t << 1
is not satisfied, This point is discussed further in Sec. 4.7,

The system of Eqs. (4-1) through (4~4) is now used to determine the excita-
tion of the internal degrees of freedom in a single collision for both the rigid
rotor (wrt >> 1) and the harmonic oscillator model (wT << 1). To this end, it is
convenient to replace the molecular velocities, Vi by a center-of-mass
velocity, Yom a0 angular velocity, £, and a spring deflection velocity, wtlg.
These quantities are defined by the conditions

(™17 ™M) YoM T Mt Va¥p o (4-11)
I =makxy -mpakxy, . (4-12)
vio-viy ok =w (4-13)
(dl ”2) - - ’
thus,
m,w*
Yy “¥cmtExakt mo+ m, & (-14)
*
| 9 v
! e —- - ————— =15
: Yp T¥om T =X 3K m, + mz-‘# : (4-15)

NS M WL GRS W WS s e Weowd Beesst deesss Geesss e Tees e IR UM e
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By substituiing Eqs. (4-14) and (4-15) into Eqs. (4-1) through (4-3), the conserva-

tion laws take the form

(M1% M2) fom T Mg (Yq " ¥q)

meke (%) "1

12 2 1 2 1.2
2%Yq T2Mg'q T2 (M M) Vem* 10 +

Equaticns (4-2) and (4-6). together with the expression
D We Kk =m Vong s k+p w
VT AT MIom &7 Hpo

for the oscillator model, and the condition

4-16)
4-17)

*
%umwz (4-18)
(4-19)
4-20)

for the rigid rotor model, constitute the formulation of the problem.

The above system of equations is readily solved by using Eq. (4-8) to

eliminate q from Egs. (4-16) and (4-19). Thus, Var

pressed as functions of the impulse W as

n,W
YoM —m1+ m,
g BT
- - 1 s
g
wh o= - m

1-62

Q. and w* can be ex-

“-21)

(4-22)

(4-23)
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The last equation is replaced by w* = 0 for the rigid rotor model. Substitution
of Eq. (4-22) into the energy conservation equation yields the following results
for W by using the harmonic oscillator model

2v_+1n
W = g_ -1 5 , (d-24)
p - kY (%% 2)

where
g = oSt (B R
and
mym
qusz+mq ’ mD=m1+m2

Here, Rl and Rq are, respectively, the hard-sphere radii for the molecular
atom experiencing the collision and the collision partner. The corresponding

expression for the rigid-rotor model is

W=~ - g 3 : . (4-25)
-1 ‘qu X nl)
Pap) * T 1

Expressions (4-21) through (4~25) constitute the required solution. Ignoring
those incident configurations that lead to multiple impacts (e.g., certain col-

linear collisions) as statistically unimportant compared with those that do not,
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the rotational and vibrational excitation energies experienced in an individual

collision are given by

wHe (4-26)

1]
o
]

Ep =% ) (4-27)

These expressions follow immec s tely from the a ssumption that the deformation

£ is small compared with a, +a . that the post collision oscillations can be

Q
2 "
expressed in terms of a3 Lagrangian, LV’ of the form

=1 %2 _ 1 2,2 -
Ly =ghpW7) —grppw d . (4-28)

The modification of these results because of the presence of a steep, con-
tinuous potential of the iype considered above could be calculated, in principle,
using multi-time scale pertfurbation techniques. For example. such a calcula-
tion could he employed to determine the effect of a slow rotation or vibration of
the molecule about the center of mass on the trajectory of the collision partner
as it passed through the potential, ¢ a(r aq)’ of one of the molecular atoms.
The rotational and vibrational excitation would be altered by an amount of the
order of lQJT by this phenomenon, which would permit vibrational excitation of

this magnitude to occur even tor collisions perpendicular to the mclecular axis.

Similar procedures could be employed when the vibrational period is much
smaller than the interaction time. However. it is not clear that such elaborate,
classical calculations of vibr itional effects should be performed until it is

evident that a classical description of this channel is appropriate,
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4.4 Kinematics and Probakility Model

The colliding atom is assumed to be drawn from a uniform beam of such
atoms with common velocity vector v q The diatomic molecule is assumed to
have a random orientation with respect to its center-of-mass at the time of
impact. In what follows, the (i, J» k) coordinate system is fixed in the molecule
with origin at the center-of-mass and the axis-of-symmetry in the z-direction
(see Fig. 4-1), so that the beam is viewed as randomly oriented. By sym-
metry, yq can be assumed to lie in the y-z plane for all collisions, making an
angle 6 with the z axis, with differential probability density, sin 6d6. The
location of the collision partner's center prior to impact is given by the impact
parameter b and an angle 8, which are polar coordinates in a plane orthugonal
to -Yq' Since this distribution is uniform. the differential probability density is
b db dg. The third location parameter, D, the initial distance apart, is, of
course, arbitrary. A second coordinate system (i*, l*. 1(_*), centered in the
colliding atom. is defined by rotation

1*-=1.l*=jcoso-1§sin9,!£*=jsin9+5coso , (4-29)

so that the beam axis is _lg,*. It follows that the initial location of the atomic

center is

D5*+ b (cos Bi:k+ sin ,Bj*)

T
I

(Dsin()+bsin3ccse)j+(bcosB)L,
+ (Dcos @ ~-bsinpsinf)k . 4-30)
The point of impact with one of the molecular atoms (say atom 1) is deter-

mined next. Let the vector between atomic centers initially be c p- alli.

At the time of impact, the colliding atom has traveled a distance p in the

165
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direction —1‘5‘*. Let the final vector between centers be (R1 + Rq) o/, where

1’ is a unit vector relative to atom 1. It follows that

(Ry* Rg)m =g-ok" (4-31)

which defines both p and ¥ . The local angles ¢’ and & are found from

cos ¢ = 1n «k and coso =n - 1.5\.*' The solution to these equations yields

sin @ = J (al sin 0 + b sin ,’3)2 + (b cos ﬁ)z/(Rl + Rq) , (4-32)

p=D-a cosg - le + Rq) cos o (4-33)

1

cos ¢’ = cos §cos & ~sin g (al sin 8 + b sin B)/(Rl + Rq> . (4-34)

where, if the r.h.s. of the first equation is greater than unity, there is no
collision. In the case of impact with atom 2, one must replace R1 by RZ’ and
a, by -a,.

Finally, let P Py denote the distance p from impact with atom 1 and
atom 2. respectively. Then, the actual impact will occur on atom 1 if Py<Py
and on atom 2 otherwise (which choice is independent of DY. Also, given the
angles 0 and 8, a maximum feasible impact parameter, bmax‘ is obtained by

setting sin o =1,

4.5 Calculatien of Rotational and Vibrational Energy Distributiuns

For each collision, the rotational and vibrational energies are given by
Egs. (4-26) and (4-27), where ior the rigid rotor, EV = 0. In the following

trcatment, these energies are nnrmalized by the center-of-mass energy,
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ECM =1/2 qu vz. Assuming for definiteness that the impact occurs on atom 1,
in the vibrational case the formulas simplify to

\ _ 22, 2 v _ 2, 2,
ER’ECM Elsm 0’ cos oz,E/ECM Elcos ¢ cos” o,

Vv
4-35)
Thus, the maximum energies, ER and EV, occur for normal collisions at

* =qn/2 and 9’ =0, respectively. The maximum normalized value in either
case is

-2
B i TR
El =4 _CLzl_z_ 1+ _QD_z_lg_ , (4-36)

which is a functior of the masses only and never exceeds unity. It is also
easily seen that E1 is larger than E2 (corresponding to impact on the heavier
atom 2),

In the rigid rotor case, the formula (for atom 1) becomes

-2
Bl By M
EIr{/ECM =4 —‘DL,,@ 1+ _q_I)2_12 sin2 o’ sin 9" cos2 o’
my ™

4-37)

In this case, the maximum normalized energy is a function of 6’, as well as the

masses, and attains the value unity for a normal collision with

m m. +m
sin2 0 = ;ll 1+ —4—9 , (4-38)
q My

(if, and only if, the r.h.s. is less than unity).
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12 I, and, if violated, the maximum value

is identical to the vibrational case (namely, E1 at 0’ = 1/2). Again, impact on

This condition is equivalent to qu a2

the heavier atom clearly leads to higher energies.

The probability distributions for the normalized energies are computed by
a Monte Car'n technique for each of the collision pairs in Table 4-I, and for
both the rigid rotor and vibrational models. Pseudorandom numbers are used
to generate sample collisions with the collision parameters (0, 8, b) drawn
from a probability density with differential

b sin 0 do dbdg . (4-39)

This amounts to generating uniform random variables (cos 9, 8, b2) and deter-
mining the local collision angles (6, ') or (9” , @” ) by the formulas of the
previous section. By considering symmetry and realizability, the collision
parameters are restricted to the intervals 0 <6 <7, § <B <, and

0<b _<_bmax(0, B).

From the sample collisions, a frequency histogram of E/E is con-

CM
structed for each of the three energies, Ef{, El‘;, and E‘\’, This histogram is

converted to an approximate probability density P(x) by the definition

P(x) = prob {xi < E/ECM <Xt Ax} /Ax 4-40)

for X LXK + Ax. In all cases, 20 subintervals are used on the interval

0< E/ECM < (E/ECM)max’ so that Ax = 0,05 E1 for the vibrational model, and
Ax = 0. 05 for the rigid model. The total number of sample points used is
50,000. The results are displayed in Figs. 4-2 through 4-10,
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Figures 4.2 through 4.10 - Normalized probability distributions for the inelastic

excitation of the diatomic hydrides OH, HF and HC1
in collisions with He. O, and Ar. Solid histogram
represents E\V',/ Eom and drshed-dotted histogram,
EIV;/ Eqyp for the harmonic oscillator-atom colli-
sions. Dashed histogram represents EII;‘/ ECM for
rigid-rotor-atom collisions. Specific sets of colli-

sion partners are indicated for each figuve.
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Figure 4.3 - Ar + HF.
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Figure 4.6 ~ Ar + HCI.
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3701,

However, the probability distributions showed virtually no isotope effect, and

Separate runs were made for atomic collisions with H3501 and H

only the results for H3501 are displayed. Tabie 4-II gives the sample means

in the following format. The top number for each collision pair represents the

Table 4-1II. Normalized Mean Excitations

Diatomic Atom He O Ar
Eﬁ/ECM 0.127 0.112 0.113
Vo
Ep/Eapy 0.083 0.069 0.072
OH
v
EY/Eqyy 0.036 0.029 0.029
P, 0.283 0.296 0.309
E%/ECM 0.127 0.106 0.103
Ep/Eqy 0.083 0.063 0.062
HF
\'
E
Ey/Eqp 0.035 0.026 0.025
P, 0.300 0.319 0.329
/oy 0.077 0.059 0.055
EY /R 0.044 J.029 0.030
=’ Eoum X ) .03
HCl C
IV (-
LV/ECM 0.023 €.015 0.014
P, 0.186 0.195 0.210
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mean fraction of the center-of-mass collision energy which the rigid rotor-atom

collision imparts to the diatomic's rotational modes (Eg/ E The second

).
number for each pair is the mean fraction imparted to the fc}:;tional modes in
the harmonic oscillator-atom collision (El;/ ECM). The third number repre-
sents the mean fractional energy in the vibrational mode for the harmonic
oscillator-atom collisions (E‘\',/ ECM)‘ The sample probability Py of impacting
on atom 1 (the H atom) rather than atom 2 is also shown as the fourth number.
Estimates of the maximum relative error in the plotted values of P(x) can be
made by using a normal approximation to the multinomial distribution for a
histogram. These estimates typically range from 2% for P(0) to 100% for

P(E ). The relative errors in the means and p | are all within 2%,

max

4.6 An Approximate Distribution for the Vibrational Model

The simplicity of the energy expressions in the vibrational case leads
naturally to an approximate analytic expression for P(x) which is quite accurate.
First, assume that the probabilities P, Py of impacting atom 1 or atom 2.
respectively, have been accurately estimated hy Monte Carlo methods. and then
restrict attention to, say, atom 1. The probability distributions for the random
variables (¢ , o' ) are derived from those for (0. b, 3), and then transformed
analytically to ohtain the distributions for the energies, However, to make the

transformation tractable, a certain geometric approxin:ation is introduced.

From physical considerations. one expects the distribution of hits on the
surface of atom 1 to be random; that is, cos * is uniformly distributed. This
conjecture is verified both by simulation and manipulation of the equations of
transformation. Similarly, inspection of the equation for sin2 o' leads to the
conclusion that it (and hence cos2 ¢') is also uniformly distributed indepen-
dently of 6" .
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Both these results ignore the effects of shielding by atom 2 on some
trajectories that would otherwise impact atom 1. Such shielding is of two
types (see Fig. 4-11). In the first type (total shielding), a range of angles
6'K< 6’ < r is totally inaccessible. In the second type (partial shielding), for a
range of angles B'T <0 < e'K the probability of impact is reduced, and the dis-
tribution of o/ depends on 6. For 0 < ¢ < 0'p atom 2 has no effect. The
approximation made is to ignore partial shielding, while taking account of total
shielding. The formula for B’K is easily obtained from the geometry,

~cos O’K =1| - (R2+ Rq)2+ (a1+ a2)2+ (R1+ Rz)zJ

(4-41)

Figure 4. 11 - Definition of the angles 0k and 0 -
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Now, still restricting attention to atom 1, let

sy N\ A oV
Yy ‘(EV/ECM)/El SRL ‘(ER/ECM>/E1 : (-42)
x1 = 0052 o Xy = cos @' . (4-43)
Then,
=X x2 = 1- x2 \‘
Y1 =% % o Yo =% 2 )"

and (x4 xz) are uniform random variables with ranges 0 < x, <1 and

1
—61 =cos O’K $X%5 < 1. (Note: O’K < 1/2 for the collision pairs considered.)
It is now straightforward to derive the distribution of (yl, yz). Using the

Jacobian of the transformation J = 2x1x2, the joint distribution 1s found to be

1 1 r 1—1/2

1+ 5, %1%, = 3 (T+ ) | ¥y (1% ¥a) |

-

from which the marginal distributions for A and y, are obtained by integration.
Denote the joint density function by f(yl, y2). In order to do the integrations, it
is necessary to specify the region of admissible (yl, yz)foutside of which
f(yl,yz) =0)]. Since the Jacobian, J, equals zero along the line X, = 0, the
integrals must be calculated separately over different regions, according to the
sign of Xg By using the bounds on (xl,xz), these regions are R1 and R2, as
indicated in Fig, 4-12;1i.e.,

S é nyl’y2) dy1 dy2 =1 . (4-45)
R+ By
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Finally, the marginal distributions are obtained as follows:

.
1-y
1
_ 1 -1/2_ 0 : 2
S f(¥1:¥9) 2 =T 5 <y1 b ity 26
o}
fl(y1’51)=ﬁ
1-y 1-y
1 1
‘ _ 1 -1/2 1 N . 2
S ¥ S Y Ye) W = 1w 4, <2y1 A ity 26
(o] =/ -

SRICILE

(4-46)



S TR

L A A el B - -

(1,
g f(yl’yz)dyl =1726:cos h-1 <y21/2/ , if Yozl- 6?
o
4-47)
- 2 2\
(72 %) B [61/ <1-61>J 72 1 1/.-1/2\
S + S‘ f(yl’yz)dyl =3 5 {cos h <y2 /)
o]

o

-1/2
-1 2 . 2
+ cosh [(l - 61> }} , if Yo 21 -6

The means are found to be §1 =1/6 [ (1 + 6? y/(1+ 6, )], and 3_72 =1/2 - §1,
where the last relation follows from the identity ¥y, + Y, = X
Now consider impacts on atom 2. Exactly the same reasoning leads to

identically the same distributions if 51 is replaced by 62 = cos 0i’<.
(Note: 6’]’( < 1/2.) The distributions on the two atoms separately can be folded

together with the empirical probabilities P, and Py to yield the total density

2

EY \ )
v ,
P CM/ Py IKEV/ECM /E}:6 W/E‘“psz E /ECM>/E2’6ZJ/E

(4-48)

and similarly lor EIV{ replacing fl by f2. (Recall that dy1 = d(E;/ECM)/El.)

In Fig. 4-13, this approximate density is compared with the Monte Carlo
results for one case and is observed to be within the statistical error. The

approximate and sample means differ by less thaa 3%. {Note: A similar

approximation can be constructed for the rigid rotor model. but would involve

numerical integration for the densities.)

I-84




it

vyt
2

23

i

p

Figure 4.13 - Comparison between approximate and empirical distributions for
O+ HF wnhm the sibrational model.

sents EV/ Ecpp and dotted histogram,
curves represent approximate solutions for these distributions.

0.0

1-85

Dashed histogram repre-

/E

M- 2nd smooth

—
o

Bt oo Ei e s S FIFTWEST L IO oL e T e - = - - _— -
' o Y T T T ™ T Y T T -
- 3
L .
- ]
F -
sl
]
L O+ HF .
1
!
0 EN 3
| -
5 B
l i -
- —
PEE,) 10 F :
- -
| -3
L 1
' N . \ -1
01 | E
[ 3]
l F ]
- y
e 1 -J
- ' B
]
' 1
- ] 1
e |
1
,01 4 "y e 1 ' 1 AL A . > L 1




4.7 Differential Energy Transter Cross Sections

The probability distributions, P(E/ ECM)’
can be converted to differential energy transfer cross sections describing the

shown in Figs 4-2 through 4-11,

harmonic oscillator rotational or vibrational excitation or the rigid rotor rota-
tional excitation as a function of incident center-of-mass kinetic energy by the

relation,

oo (E/ECM) thP (E/ECM)

- , (4-49)
oE Ecu

where Ohs is the geometric hard-sphere cross section for the appropriate atom-

diatom pair, and E = EY , E;, or EIr{, respectively.

Approximate hard-sphere cross secticns for the system studied can be
calculated by the following preocedure: The average geometric cross sections
for the hard-sphere diatomic models are listed in Table 4-1I. These cross-
sectional areas correspond to spherical areas of projection with radii equal to
0.99A, 0.94A, and 1.25A for OH, HF, and HCI, respectively. Normal hard-
sphere collision cross sections (in units of A2) for each atom-diatom pair can

then be constructed from the relation
(4-50)

where dab is equal to the effective spherical radius for the appropriate diatomic
as listed above, plus the hard-sphere¢ radius, Rq, of the appropriate atomic

collision partner, as listed in Table 4-I.
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4.8 Discussion

The average energy transfer results listed in Tatle 4~II, and the energy
transfer probability distributions shown in Figs.4-2 through 4-10 can be inter-
preted by noting that energy transfer in the class:cal, hard-sphere collision
model used in this study depends only on the reduced mass of the atom~diatomic
hydride system and on geometrical constraints that are, in turn, dependent on
hard-sphere radii and bond distances. These geometrical constraints arise
partly from the fact that some impact points on tae diatomic molecule are
inaccessible from certain directions due to shielding by the second molecular
atom, while other impact points are compietely inaccessible due to the finite
size of the colliding atom. A discussion of the interplay between the reduced
mass and geometric effects for atom-rigid rotor collisions was included in a

previous publication. (28)

For kinematic reasons, collisions with the hydrogen atom in the diatomic
hydride are much more effective in transferring precollision center-of-mass
kinetic enerzy into the diatom's interncl modes. It is well known that for sim-
ple atom-diatomic models, collisions perpendicular to the diatomic bond activate
only rotation, while collinear collisions activate only vibration. As can be seen
from Eq. (4-35), for impacts on the hydrogen atom ihe medel used in this work
predicts that a specific fraction of the impulse imparted during a collision is
transmitted to the internal modes. This impulse 1s transmitted into the vibra-
tional mode for collinear collisions and into the rotational mode for perpendic-
ular collisions, and is divided between the tw¢ modes at inter nediate angles.
Table 4-III shows this fraction of center-of-mass energy [ from Eq. (4-36)],
transmitted into internal modes for normal collisions on the diatomic hydrogen
atom as a function of the atom-diatomic hydride collision pair. These entries.
then, represent the maximum fraction of the centcr-of-mass energy which can
go into either internal mode for each collision pair, These results can be con-
trasted with the fact that for each of the atom-rigid rotor pairs, impact points
exist that aliow transmittal of all the ccnter-of-mass kinetic energy into the
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Table 4-III. Maximum Normalized Energy Transfer
to Internal Modes (Ef/Ecpor EV/Ecy)
in Atom~-Harmonic Oscillator Collisions.

Diatomic Atom He O Ar
OH 0.744 0.405 0.300
HF 0.730 0.379 0.271
HC1 0.691 0.311 0.195

diatomic rotational mode. This difference between the dynamics of the atom-
rigid rotor and the atom-harmonic oscillator systems is mirrored in the ex-
tended tails of the P(EII'{/ECM) distributions shcwn in Figs. 4-2 through 4-9.

Some uncertainty exists in determining the proper way to interpret the
results of classical calculations involving the collisional activation or deactiva-
tion of a quantized internal mode when the average classical collisicn exchanges
less than a full quantum of energy with the mode in question., Thompson has
discussed this point recently in regard to his Monte Carlo trajectory calcula-
tions of vibrational deactivation. (27(®)) Parker(32) has shown that a classical
calculation of the collinear collisional excitation of a harmonic oscillator will
yield the same average vibrational energy transfer as the quantum mechanical

t©33) if the initial collisional kinetic

solution first proposed by Jackson and Mot
energy is much greater than the energy of a vibrational quantum transition in
the quantum treatment. For the diatomic hydrides considered in this work, the
trensition from the ground to the first vibrational state requires on the order of
0.4 to 0.5 eV. Thus, unless the average impulse transraitted along the diatomic
bond axis becomes significantly larger than 0.4 eV, the vibrationa! energy dis-
tribution functions, P(E{’,/ECM), shown in Figs. 4-2 through 4-10, will be
largely invalid. Since the great majority of any sample of cellisions will be

both grazing and off the collinear axis, the average initial center-of-mass
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collisional enargies must exceed the 1- to 10-eV range for which our calculation

: was originally intended before the vibrational distributions in Figs 4-2 through
1 4-10 apply. Table 4~II shows that the average classical vibrational excitation

; varies between 3.6% (He + OH) and 1.4% (Ar + HCI) of the initial center-of-

E mass collision energies. Thus, even in the most favorable case (He + OH),
the initial center-of-mass energy must exceed 12 eV before one vibrational
quantity will be excited on the average. Since, on the average, more of the

collision energy goes into rotation and even the higher rotational levels are

4 much more closely spaced than vibrational levels, a similar problem does not

arise in calculating the rigid-rotor rotational excitation. (28)

PR

The purpose of this calculation was to assess the appropriateness of the

' rigid-rotor approximation in the calculation of rotational excitation probabilities
E l in collisions with initial center-of-mass energies of a few eV. The results of
the atom-harmonic oscillator calculations show that, classically, vibrational
excitation does reduce the number of collisions that exhibit high degrees of
rotational excitation. However, in the collision range between 1 and 10 eV,
most of the classically calculated vibrational excitation is "forbidden, " in the
sense that it corresponds to less than a vibrational quantum. It remains for
future work to determine, in detail, how seriously this nearly "closed" channel
affects the rotational energy distribution for this energy range. In the mean-
time, it seems reasonable to expect the rigid-rotor rotational excitation prob-
abilities, P(E;/ECM), rather than the harmonic oscillator collision probabil-

ities, P(EI;/ECM), to more closely mirror the actual situation in the energy

range of 1 to 10 eV. At higher center-of-mass collision energies, the harmonic
. ‘o s i v oV

oscillator excitation probabilities, P(ER/ ECM) and P‘EV/ ECM)’ should be

closer to reality.

The calculations presented in this work represent only a "physical" or
' dynamic picture of inelastic excitation in atom-diatomic hydride collisions.
They can be expected to be reasonably approximate for collisions between such
l closed-shell species as Ar and He with HCI ard HF,
i

1-89




Although "chemical" effects have generally been disregarded in this study,
two types of chemical effects can be expected to modify the picture presented
above. The first is actual chemical reaction, which should be most important

in the interaction of oxygen atoms with the hydroxy! radical. The reaction

O+ OH—~0,+H 4-51)

is over 0.7 eV exothermic, while exchange of the hydrogen atom between .xygen
atoms is, cf cours., thermoneutral. Reaction (4-51) has a bimolecular rate
constant of 2.16 x 10_11 cm3/ sec, apparently independent of temperature. (34)

If this rate holds to the highly nonthermal velocities modeled in this calculation

it would represent a reaction cross section (at a relative velocity of 6 x 1050m/sec)
of 3.6 A2. The approximate hard-sphere cross secticn for the models of O and

OH used above is 10.6 Az, so that an appreciable fraction of the collisions be-
tween O and OH may be expected to follow a chemically reactive channel, rather
than the inelastic activation channel calculated above. A chemical reaction could
also be important in the nearly thermoneutral hydrogen atom exchange between

O and HCI.

The second type of "chemical™ effect has been demon<trated in a nunber of
shock tube studies where nonrare-gas atom collisions with diatomics have shown
an anomolously large cross section for vibrational deactivation. (35-39) This
effect has been attributed to the increased "stickiness" of the collisions, as
represented by the formation of some type o1 moderately long-lived collision
complex that can effectively transter energy out of the diatomic's vibrational
mode. Nikitin and Umunski(40) have recently speculated that this stickiness is
due to "vibronic" vibrational-to-translational transfer involving excited elec-
tronic states of the atom-diatomic complex. Because of the principle of micso-
scopic reversibility, this effect could alsc be important in the translational-to-

vibrational energy exchange modeled above for collisions involving O and OH.
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collisional energies must exceed the 1- to 10-eV range for which our calculation
was originally intended before the vibrational distributions in Figs 4-2 through
4-10 apply. Table 4-II shows that the average classical vibrational excitation
varies between 3.6% (He + OH) and 1.4% (Ar + HCI) of the initial center-of-
mass collision energies. Thus, even in the most favorable case (He + OH),

the initial center-of-mass energy must exceed 12 eV before one vibrational
quantity will be excited on the average. Since, on the average, more of the
collision energy goes into rotation and even the higher rotational levels are
much more closely spaced than vibrational levels. a similar problem does not

arise in calculating the rigid-rotor rotational excitation. (28)

The purpose of this calculation was to assess the appropriateness of the
rigid-rotor approximation in the calculation of rotational excitation probabilities
in collisions with initial center-of-mass energies of a few eV. The results of
the atom-harmonic oscillator calculations show that, classically, vibrational
excitation does reduce the number of collisions that exhibit high degrees of
rotational excitation. However, in the collision range between 1 and 10 eV,
most of the classically calculated vibrational excitation is "orbidden, " in the
sense that it corresponds to less than a vibrational quantum. It remains for
future work to determine, in detail, how seriously this nearly "closed" channel
affects the rotational energy distribution for this energy range. In the mean-
time, it seems reasonable to expect the rigid-rotor rotational excitation prob-
abilities, P(E%/ECM), rather than the harmonic oscillator collision probabil-
ities, P(E;;/ECM), to more closely mirror the actual situation in the energy
range of 1 to 10 eV. At higher center-of-mass collision energies, the harmonic
oscillator excitation probabilities, P(E;%/ ECM) and P{E;/ ECM)’ should be

closer to reality.

The calculations presented in this work represent only a "physical" or
dynamic picture of inelastic excitation in atom-diatomic hydride collisions.
They can be expected to be reasonably approximate for collisions between such
closed-shell species as Ar and He with HC1 sd HF,
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Although "chemical" effects have generally been disregarded in this study,
two types of chemical effects can be expected to modify the picture presented
above. The first is actual chemical reaction, which should be most important

in the interaction of oxygen atoms with the hydroxyl radical. The reaction

O+ OH — O2 + H 4-51)

is over 0.7 eV exothermic, while exchange of the hydrogen atom between oxygen

atoms is, of course, thermoneutral. Reaction (4-51) has a bimolecular rate

-11 (34)

constant of 2,16 x 10 cm3/sec, apparently independent of temperature.

If this rate holds to the highly nonthermal velocities modeled in this calculation,

i
it would represent a reaction cross scction (at a relative velocity of 6 x 10°cm/sec)

of 3.6 A2. The approximate hard-sphere cross section for the models of O and
OH used above is 10.6 Az, so that an appreciable fraction of the collisions bhe-
tween O and OH may be expected to follow a chemically reactive channel, rather
than the inelastic activation channel calcuiated above. A chemical reaction could
also be important in the nearly thermoneutral hydrogen atom exchange between
O and HCI.

The second type of "chemical" effect has been demonstrated in a number of

shock tube studies where nonrarc-gas atom collisions with diatoinics have shown
(35-39) .
This

effect has been attributed to the increased "stickiness" of the collisions, as

an anomolously large cross section for vibrational Jdeactivation.

represented by the formation of some type of moderately long-lived collision
complex that can effectively transfcer energy out of the diatomic's vibrational
mode. Nikitin and Un:.unski.(40) have recently speculated that this stickiness is
due to "vibronic" vibrational-to-translational transfer invo.ving excited elec-
tronic states of the atom-diatomic complex. Because of the principle of micro-
scopic reversibility, this effect could also be important in the translational-to-
vibrational energy exchange modeled above for collisions involving O and OH.
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As noted in Section 3, the problem of multiple cnllisions has also been
ignored in tne present work. Multiple impacts are important for collinear or
nearly collinear collisions, and can influence the vibrational excitation distri--
bution. Since the focus of this work is on the rotational excitation distribution,
which is unaffected by collinear collisions in the impulse approximation, it was
felt that ignoring multiple impacts was a justifiable approximaiion. The
classical calculation of collinear collisions between hard sphere atoms and
diatomics, including the effects of multiple collisions, has becn explored in

detail by Benson et al. (41)
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5. PURE ROTATIONAL EMISSION FROM DIATOMIC MOLECULES
IN THE QUANTUM AND CLASSICAL LIMITS

5.1 Introduction

One of the most useful concepts in the construction of the quantum theory
is the correspondence principle. (42) IL can be stated in several ways, includiny
the following way: '"Quantum theory must approach classical theory asymptoti-
cally in the limit of large quantum numbers. n(43) Thus, when dealing with mani-
festly macroscopic phenomena, classical physics is an appropriate description
of nature., There is, therefore, a transition region where classical physics is a
more-or-less good approximation to the more exact quantum description of what-
ever system is of interest, or put somewhat differently, classical physics is one
approximation in the arsenal of all possible approximations to the complete,
exact quantum theory. As such, the quantitative limits on the region of validity
of the classical approximation for a system are clearly of interest, just as are

the limits of validity of any appro:ximation.

Furthermore, there are two reasons why the limits of validity and use-
fulness for the classical theory are especially interesting. First, a calculation
that displays the explicit evolution from quantum to classical behavior as quantum
numbers increase is a quantitative illustration of the correspondence principle.
Second, classical calculations tend to be more tractable than the analogous quan-
t'm calculations, so that when the classical theory may be usefully applied, it is

usually advantageous so to do.

The problem that is addressed here is that of pure rotational radiation
emission from diatomic molecules with a permanent electric dipole moment,
In particular, the emission into a broad frequency band, which includes the con-

tributions of several individual transitions, is studied. This calculation is done

e——— ——
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both purely quantum mechanically and purely classically; then the results of the
two theories are quantitatively compared to demonstrate the onset of classical

behavior as the relevant quantum numbers (and hence energies) increase.

To compare the classical and quantum theories of pure rotational
emission, it is necessary to consider radiation in a broad wavelength band.
If spectral information, line-by-line, were desired, a .'*ssical approximation
would be of little use. Thus, the wavelength band must enclose a number of
rotational lines for straightforward comparison between the two theories. The
results of the calculation show that for large quantum numbers, a band con-
taining as few as approximately five lines is sufficient for reasonably close agree-

ment between the two theories.

Quantitatively, the results of this calculation apply only to simple rigid
rotors whose energy levels are (2 ¢ + 1)-fold degenerate, where ¢ is the princi-
pal rotational quantum number. Qualitatively, however, these results shed light,
as well, on the classical limit for the asymmetric rotor with a permanent electric
dipole mcment. Since the levels of an asymmetric rotor are nondegenerate, and
the energy levels are more closely spaced on the average than for the case of a
simple rotor, it is clear that whenever the classical model of rotational emission
is valid for the diatomic case, the classical model for radiative emission from an

asyminetric rotor will certainly be valid for similar quantum numbers. (44)

5.2 Quantum Mechanical Formulation

The only nonzero Einstein coefficients for purely radiative decay for a
rigid rotor with permanent electric dipole moment, x , and moment of inertia
I, are those in which the principal quantum number decreases by 1, and the

second quantum number, m, changes by C or + 1, (45)

3
L o etm) (Fom) .
A:m,p-1,m = TR ) @2i-)) G-1)
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3
- i £T(i+m) (f+m - 1)
Armi -1, m-1 - %3 (2e+ 1) (27 - 1) (5-2)
A | (3 (£-m) (i-m-1) 5-3
fm-—=f-1,m+1 2 @1+1) 27-1) ’ -3
where
= (4nZpl/3ct) . (5-4)

The Einstein coefficient for the transition from any m value in state ¢
to all m' values in state ¢ -1 is simply the sum of the above three expressions,

and is independent of m. Thus,

A, =u4/(21+ ) . (5-5)
This means tlat the problem of radiative cascade from one rotational energy

level to the next is independent of the quantum number, m.

In order to determine the power radiated by an ensemble of excited
rigid rotors, the population of each excited rotor energy level must be found.
If it is assumed that at t = 0 there is an ensemble of rotors all excited into the
rotational state with principal rotational quantum number f o’ then the equation
governing the average population of the ty level is given by the following

expression, in the absence of collisions:

dNI

O
—2 =-A, N, @ , (5-6)
dt £0 {0
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where N; (t) is the average population of the £ level, regardless of the quantum
(o}
number m, If the normalized boundary condition of N;o(t=0) =1 is imposed, the
solution of this simple equation is
At
fo

In general, the population of the ¢ o level obeys the following equation:

dNE -n

o - + -
& = -A Nl + A N‘ (5-8)
(o] 0o o-n+1 o-n+1

Because of the seclection rule, ' = 7 - 1 for radiative decay, only the population
of the level one step higher than the level of interest can contribute to the popu-
lation. Thus, the only two nonzero terms on the right side of the above equation

have been included.

The above set of equations, along with the (0 equation and the boundary

condition at t = 0, is easily solved, For f #¢ o’ the general solution is

f _
0 At (A‘ Afo_l Af+1)

N = D e - 69
o
Pr=¢ [1 (A"'—A‘)
frr = f
pu?{[v

The above equation gives the average population of the various rotational energy
levels for an ensemble of rotors with the normnalized boundary condition that

N, (=0)=1andN, . (t=0) o.
o) (o]
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The energy given up by a rigid rotor when it undergoes a radiative transi-

tion from state ¢ to state ¢ -1 is
20 2
Ep - Egy = (0/20[eceen) - (1) -1+ 1)] - (h°/1) 1 (5-10)

The contribution to the average radiated power by the Pth level P; is, therefore,

given by
To compute the total average emitted power, it is now only necessary to sum

up the contribution from each individual transition. The average total power

emitted by an ensemble of particles, all of which were in the state f att =0, is

¢ -1 -A Lt
, o f f Afo A[o_l A[+ 1
P(,t =@ /1) z (A, Ze -
(=1 P o
H KA[‘H -A[v)
fro=g
_A‘ ¢ ,N’{['
o
i A e . (5-12)

The above expression is the total radiated power. If only the power emitted
into some frequency band is of interest, the sum over{ must be modified to include
only those transitions that contribute to the band. If the lower and upper limits
for the angular frequency for the band are designated w
then,

1 and Wy, respectively,

w, S (€ - E,_)/hsw, (5-13)
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This is an implicit relation for the maximum and minimum allowed ¢'s in
4 the first sum over ¢in Eq. (5-12). The power :in a given band will simply be
2 denoted by P (¢, t; w; , ).

Equation (5-12) gives the power radiated as a function of time, Therefore,
to find the total energy radiated into the band, P must be integrated with respect

£ to time fromt =0 tot = © . Thus,
z ©
EN (f,5w, wy) =j dt P (¢, t wy, w,) ) (5-14)
E °
— and
2 £ -1
0

2
EN (i W), wy) = M /I){ eme/i- w,) G(wz-'ﬁf /T

f
E Z [0 A(n
: f < ﬂ (A; vv’Ai;))
e fr=f \ =y
" o [4Al 74 [
+ e(mo/l—wl) e(wz-mo/n co] , (5-~15)
’ where g(x) = {0forx <0 (5-16)

lforx >0

The two-step functions in Eq. (5-15) arise because of the band limits on the first

3 { sum (i.e., as a result of Eq. (5-13).

Rewriting the sum of the products of the pair-wise differences of the A; 's
2 : in Eq. (5-15) in terms of a Vandermonde determinant, (46)then putting all the

terms in the {' sum over this common denominator, the total band energy, EN,

A
e

simplifies considerably.

o o
Aanerw g W

1

I-98

ES s
=X
[]
B




. TR O R A T L T ST S Y T e v e -

e —— — ———

f0
EN (i jjwpwy) = z (hz/l)ﬂe(hz/l—wl)e(w? -hi/n . 6-17)

f=o0

This expression simply means that each level in the band pass contributes an
energy of (hz i /1) to the total energy, which could have been written in the
beginning. The integration of the power to get this simple expression for the
energy is, therefore, a check on the validity of the power formula, Eq. (5-12).

Equations (5-12) and (5-17) are the quantum mechanical expressions
for the power and energy emitted by a rigid rotor with a permanent electric dipole
moment, The power emitted by such a rotor may also be calculated by using
strictly classical physics. It is this classical version of the calculation to which

attention is now directed.

5,3 Classical Formulation

A classical rigid rotor with a permanent electric dipole moment radiates
as it rotates, since the two charges making up the dipole are being accelerated

because of their circular motion. The dipole is radiating energy away, so that

there is an effective torque acting on it, the radiative damping torque, E (44, 47)

£= (2/3c3) pXp , (5-18)

where p is the electric dipole moment, and the dots signify a time derivative.

For pure rotation

Bo=wXxwXxwx oy |, (5-19)

where w is the rotor's angular velocity.
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This classical model for radiative damping and emission now reduces to

solving the equation of motion for W, using the torque, /. For a simple
rigid rotor,

Ié =f , (5-20)

or

w = @p/3cdy W, (5-21)

The solution of this equation is straightforward, and leads to the following

expressions when using the initial condition that w (t=0) = W

1/2
w/(1+8 w2y , (5-22)

€
i

where

O
]

2
4pu /3¢t . (5-23)

In order to find the power radiated by this rotating dipole, it is necessary

only to use these expressions for w in Larmor's power formula:(47)

P o=@ [K]? (5-24

or, upon using Eq. (5-22),

2t2

P o= @8/2) w '/ a+bw i’ . (5-25)

This is the classical analog to Eq. (£-12) for the power emitted from a quantum

mechanical rigid rotor with a permanent electric dipole moment,

The above equation is the total average power emitted by the rotating dipole.

If one is interested in the power emitted into some frequency band from w 2 to
then this expression must be modified to

w, with, for example, w, > w

1 2 1’
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include contributions between only the proper frequencies. Thus,

P(w,wy) = [(16/2) w26 w? t)]

X [9 (w2 -W) g(w - wl)J . (5-26)

The total energy radiated during a complete band pass, EN, by a classical
rotor is simply the difference in energy of the rotor between the state when it is
at the top of the band and the state when it is at the bottum of the band.

2 2
EN = (1/2) I( wy -w;)for w > w,
2
(1/2) I( wo- wlz) for Wy < W< W, (5-27)
0 for wo < wl .

In the compietely classical limit, the power described by Eqs. (5-12) and
(5-26) should become identical. In fact, if a classical approximation is made in
Eq. (5-8), the classical result in Eq. (5-22) may be obtained directly. For a
state, £, Eq. (5-8) may be rewritten as

4 4
o f (i+ 1) c_
at <2f+ 1) Ny o+ "((2 (i~ ) +1)>N:*1 (5-28)

having used the expression for the Einstein coefficient, Eq. (5-5). In order to
approach the classical limit in the equation, { must become a continuous variable
so that N becomes a function of the two variablest and ¢. Also, the difference
between the fth and the (f+ 1)th terms on the right side of Eq. (5-28) must
become a partial derivative. Finally, by recognizing that

2¢ +1 =21 s 9-29)
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in the classical limit, Eq. (5-28) becomes

1 aN(,t) _ 1 @ 3

e L (5-30)
or

1 _aN _ 1 3 8N 3 .= i

x ot 2 b T T3 N (5-31)

The characteristic equations for this partial diffevential equation are

dt

& - ,:_ (5-32)

% =-% ¢3 (5-33)

I B AS (5-34)
The solution of these equations is straightforward.

t -~ sk (5-35)
and

(2 - (SHO'Z)’I (5-36)

Having used the boundary condition that when s is zero (and hence, when t is zero),
fis for From Eq. (5-10), the relation between the irequency w and the quantum

number f in the classical limit is clearly given by

w = ht /L (5-37)
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Thus, using Eq. (5-35) along with the definitions of x and 6 , Eq. (5-36, becomes
2 2 2
wé =z w w -
o/ (1+8 w T (5-38)

which is identical to the purely classical result, Eq. (5-22).

5.4 Results

In order to examine the onset of the classical limit for the rotational radi-
ation from a diatomic molecule, the power as calculated from noth quantum
(Eq. (5-—12)) and classical(Eq. (5-26)) theories has been computed for a variety
of initial quantum levels and band passes. The curves for radiated power as a
function of time are shown in Figs. 5-1 through 5-4. In each case the prediction
of the quantum theory is represented by the solid lire, and the prediction of the
classical theory is represented by the dashed line. The classical curve has
been drawn so that the area under the curve (i.e., the total energy emitted in a
band pass) is the sume as that for the quantum curve. This means that the energy
of the rotating molecule as it decays into the band, classically, is the same as

the highest quantum energy state included in the band; and for the decay out of the

band, the classical energy is equal to the lowest quantum state included in the band.

The expressions for the radiated power are applicable to any diatomic
molecule with a permanent electric dipole moment, but in order to be concrete,
all the results have been plotted for the hydrogen flouride molecule. The results
will be qualitatively the same for other molecules, but since the moment of inertia
and electric dipole moment will vary from case to case, the time scale for decay
will be different for each case. It is a reasonably straightforward matier to apply
the results to any other molecule of interest.

There are a number of interesting features shown in Figs. 5-1 through 5-4.
First of all, as the relevant quantum numbers increase, the agreement between
the quantum and classical theories improves, as one would expect on the basis of

the correspondence principle. In fact, the results plotted in Fig. 5-3 for an
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initial rotational quantum number of 30, and a band enclosing contributions from
the 25th through the 10th levels, shov close agreement between the two theories

for almost all times of interest.

In Figs. 5-1 through 5-3, the initial rotationz] state emits at a frequency
too high to contribute to the band power, so that there is some nonzero time inter-
val when there is little or no radiation. Classically, the onset of radiation is
abrupt, but quantum mechanically, it is gradual, and, in fact, is nonzero before
the beginning of the classical radiating region. This precursor is 2 manifesta-
tion of the fact that there is always a nonzero, albeit sometimes quite sinall,
probability for a very rapid quantum transition.

At the onset of the classical radiation, the classically computed power is
larger than the quantum mechanically computed power by roughly a factor of 1.5
or 2. Th*, "overshoot" remains at higher quantum levels, but tends to become
increasingly narrow, so that this initial classical peak becomes a spike of infini-
tesimal area,

Finally, just as the classical curve begins abruptly, it ends abruptly as
the frequency decays to a value outside the band limits. The quantum curve
decays continuously across this region, and the decay is asymptotically described
by an exponential function with a lifetime equal to the lifetime of the lowest

energy state that contributes to the band.

As Fig. 5-1 through 5-3 show, the main difference between the classi-
cal power and the quantum power for quantum nunibers above approximately
10 occurs in the precursor and overshoot at the beginning of the classical radi-
ating region, Figure 5-4 shows the case where the initial state is able to con-
tribute to the band power, so that there is neither a precursor nor an overshoot,
The agreement between the two curves is within a few percent everywhere in the

classical radiating region.
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A number of conclusions can be drawn from the foregoing discussion.

For rotational quantum numbers greater than 15 to 20, and for bands sufficiently
wide to include the contributions of 6 or more levels, the classical thecry very
closely reproduces the quantum mechanical prediction of the radiated power as a
function of time. This is especially true in those cases in which the initial state
can contribute to the power radiated into the band. Any distribution of initial
radiating states (e.g., a thermal distribution) would remove the abrupt beginning
and end of the classical radiating region. Hence, the sharp corners of the classi-
cal curve would be smoothed, bringing the predictions of the two theories into

considerably closer agreement.

This work is for the case of a simple or diatomic rotor whose energy
levels are (2 { +1)-fold degenerate. For an asymmetric rotor whose levels are
not degenerate, the classical theory would probably be adequate at even lower
quantum numbers or energies, and for bands somewhat narrower than those con-
sidered for the diatomic rotor. The classical theory for an asymmetric rotor
does not predict sharp cutoffs for the power;(3) thus, there would be relatively

few precursor or overshoot problems, as described above,
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